Hijacking a neurodevelopmental epigenomic program in metastatic dissemination of medulloblastoma [ATAC-Seq]
Ontology highlight
ABSTRACT: How dysregulation of neurodevelopment relates to medulloblastoma (MB), the most common pediatric brain tumor, remains elusive. Here, we uncovered a neurodevelopmental epigenomic program being hijacked to induce MB metastatic dissemination. Unsupervised analyses by integrating publicly available datasets with our newly generated data revealed that SMARCD3/BAF60C regulates DAB1-mediated Reelin signaling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements (CREs) at the DAB1 locus. We further identified that a core set of transcription factors, enhancer of zeste homolog 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the CREs at the SMARCD3 locus to form a chromatin hub for controlling SMARCD3 expression in the developing cerebellum and metastatic MB. Elevated SMARCD3 activates Reelin/DAB1-mediated Src kinase signaling, resulting in MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for MB patients.
Project description:How dysregulation of neurodevelopment relates to medulloblastoma (MB), the most common pediatric brain tumor, remains elusive. Here, we uncovered a neurodevelopmental epigenomic program being hijacked to induce MB metastatic dissemination. Unsupervised analyses by integrating publicly available datasets with our newly generated data revealed that SMARCD3/BAF60C regulates DAB1-mediated Reelin signaling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements (CREs) at the DAB1 locus. We further identified that a core set of transcription factors, enhancer of zeste homolog 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the CREs at the SMARCD3 locus to form a chromatin hub for controlling SMARCD3 expression in the developing cerebellum and metastatic MB. Elevated SMARCD3 activates Reelin/DAB1-mediated Src kinase signaling, resulting in MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for MB patients.
Project description:How dysregulation of neurodevelopment relates to medulloblastoma (MB), the most common pediatric brain tumor, remains elusive. Here, we uncovered a neurodevelopmental epigenomic program being hijacked to induce MB metastatic dissemination. Unsupervised analyses by integrating publicly available datasets with our newly generated data revealed that SMARCD3/BAF60C regulates DAB1-mediated Reelin signaling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements (CREs) at the DAB1 locus. We further identified that a core set of transcription factors, enhancer of zeste homolog 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the CREs at the SMARCD3 locus to form a chromatin hub for controlling SMARCD3 expression in the developing cerebellum and metastatic MB. Elevated SMARCD3 activates Reelin/DAB1-mediated Src kinase signaling, resulting in MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for MB patients.
Project description:To assess the requirement of Nova2 for alternative processing of RNA in the developping brain. Neuronal migration leads to a highly organized laminar structure in the mammalian brain and its mis-regulation causes lissencephaly, behavioral and cognitive defects. Reelin signaling, mediated in part by a key adaptor, disabled-1 (Dab1), plays a critical but incompletely understood role in this process. We found that the neuron-specific RNA binding protein Nova2 regulates neuronal migration in late-generated cortical and Purkinje neurons. An unbiased HITS-CLIP and exon junction array search for Nova-dependent RNAs at E14.5 focused on components of the reelin pathway revealed only one candidate—an alternatively spliced isoform of Dab1 (Dab1.7bc). In utero electroporation demonstrated that Dab1.7bc was sufficient to induce neuronal migration defects in wild-type mice and exacerbate defects when Dab1 levels were reduced, while Dab1 overexpression mitigates defects in Nova2-null mice. Thus Nova2 regulates an RNA switch controlling the ability of Dab1 to mediate neuronal responsiveness to reelin signaling and neuronal migration, suggesting new links between splicing regulation, brain disease and development. Keywords: Comparative analysis RNA from the cortex of 3 wild type and 3 Nova2 KO E14.5 cortex. One array per biological replicate.
Project description:To assess the requirement of Nova2 for alternative processing of RNA in the developping brain. Neuronal migration leads to a highly organized laminar structure in the mammalian brain and its mis-regulation causes lissencephaly, behavioral and cognitive defects. Reelin signaling, mediated in part by a key adaptor, disabled-1 (Dab1), plays a critical but incompletely understood role in this process. We found that the neuron-specific RNA binding protein Nova2 regulates neuronal migration in late-generated cortical and Purkinje neurons. An unbiased HITS-CLIP and exon junction array search for Nova-dependent RNAs at E14.5 focused on components of the reelin pathway revealed only one candidate—an alternatively spliced isoform of Dab1 (Dab1.7bc). In utero electroporation demonstrated that Dab1.7bc was sufficient to induce neuronal migration defects in wild-type mice and exacerbate defects when Dab1 levels were reduced, while Dab1 overexpression mitigates defects in Nova2-null mice. Thus Nova2 regulates an RNA switch controlling the ability of Dab1 to mediate neuronal responsiveness to reelin signaling and neuronal migration, suggesting new links between splicing regulation, brain disease and development. Keywords: Comparative analysis
Project description:The goal of the study was to determine global expression differences and commanlities in three different Reeler mutant mosue models. Phenotypically mice deficient in Reelin, Dab1 or both Reelin receptors apoEr2 and Vldlr exhibit a severe Reeler phenotype. We used microarrays to detail the global programme of gene expression changes occurring in the frontal cortex of three different mouse models which each generate a Reeler phenotype.
Project description:Hematopoietic stem cells are both necessary and sufficient to sustain the complete blood system of vertebrates. Here we show that Nfix, a member of the nuclear factor I (Nfi) family of transcription factors, is highly expressed by hematopoietic stem and progenitor cells (HSPC) of murine adult bone marrow. Although shRNA mediated knockdown of Nfix expression in Lineage-Sca-1+c-Kit+ HSPC had no effect on in vitro cell growth or viability, Nfix-depleted HSPC displayed a significant loss of colony forming potential, as well as short- and long-term in vivo hematopoietic repopulating activity. Analysis of recipient mice 4-20 days post-transplant revealed that Nfix-depleted HSPC establish in the bone marrow but fail to persist due to increased apoptotic cell death. Gene expression profiling of Nfix-depleted HSPC reveals that loss of Nfix expression in HSPC is concomitant with a decrease in the expression of multiple genes known to be important for HSPC survival, such as Erg, Mecom, Mpl and Prdm16. These data reveal that Nfix is a novel regulator of HSPC survival post-transplantation and establish, for the first time, a role for Nfi genes in the regulation of this cellular compartment. 3 NFIX depleted samples are compared to 3 wt samples
Project description:We previously identified a gene signature predicted to regulate the epithelial-mesenchymal transition (EMT) in both epithelial tissue stem cells and breast cancer cells. A phenotypic RNA interference (RNAi) screen identified the genes within this 140-gene signature that promoted the conversion of mesenchymal epithelial cell adhesion molecule-negative (EpCAM-) breast cancer cells to an epithelial EpCAM+/high phenotype. The screen identified 10 of the 140 genes whose individual knockdown was sufficient to promote EpCAM and E-cadherin expression. Among these 10 genes, RNAi silencing of the SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c in EpCAM- breast cancer cells gave the most robust transition from the mesenchymal to epithelial phenotype. Conversely, expression of Smarcd3/Baf60c in immortalized human mammary epithelial cells induced an EMT. The mesenchymal-like phenotype promoted by Smarcd3/Baf60c expression resulted in gene expression changes in human mammary epithelial cells similar to that of claudin-low triple-negative breast cancer cells. These mammary epithelial cells expressing Smarcd3/Baf60c had upregulated Wnt5a expression. Inhibition of Wnt5a by either RNAi knockdown or blocking antibody reversed Smarcd3/Baf60c-induced EMT. Thus, Smarcd3/Baf60c epigenetically regulates EMT by activating WNT signaling pathways.
Project description:Differential gene expression in the hippocampus was analyzed between Dab1 and wild type mice on the C57BL/6 and BALB/c mouse strains. Total RNA obtained from isolated hippocampus at postnatal day 19 was analysed for gene expression between C57BL6 and BALB/c wild type or dab1 mutant mice. Three samples from separate mice were analyzed from each genotype and strain.
Project description:SRC-2 is frequently amplified or overexpressed in metastatic prostate cancer patients. In this study, we used genetically engineered mice, overexpressing SRC-2 specifically in the prostate epithelium as a mouse model to examine the role of SRC-2 in prostate tumorigenesis. Over-expression of SRC-2 in PTEN heterozygous mice accelerates PTEN mutation induced tumor progression and develops a metastasis-prone cancer. We used microarrays to examine the molecular profile of prostate-specific SRC-2 overexpression adult dorsal-lateral prostate in comparison with that of control PTENF/+ heterozygous deletion mice. Total RNA was extracted from dorsal-lateral prostate of 7 months old-PTEN flox/+ control and PTEN flox/+; Rosa26-SRC-2 OE/+ adult mice, followed by gene expression profiling using Affymetrix microarrays. Each sample contains pooled prostate RNA from 3 mice.
Project description:SRC-2 is frequently amplified or overexpressed in metastatic prostate cancer patients. In this study, we used genetically engineered mice, overexpressing SRC-2 specifically in the prostate epithelium as a mouse model to examine the role of SRC-2 in prostate tumorigenesis. Over-expression of SRC-2 in PTEN heterozygous mice accelerates PTEN mutation induced tumor progression and develops a metastasis-prone cancer. We used microarrays to examine the molecular profile of prostate-specific SRC-2 overexpression adult dorsal-lateral prostate in comparison with that of control PTENF/+ heterozygous deletion mice.