Project description:We performed genome-wide DNA methylation profiling of KMS11, MM.1S, and RPMI8226 multiple myeloma cell lines to identify methylation changes distinct to each cell line Three multiple myeloma cell lines (KMS11, MM.1S, and RPMI8226) with two replicates each
Project description:We performed Illumina Infinium whole-genome SNP-CN profiling of KMS11, MM.1S, and RPMI8226 multiple myeloma cell lines to detect gene copy number variants distinct to each cell line Three multiple myeloma cell lines (KMS11, MM.1S, and RPMI8226)
Project description:This study provides a genome-wide map of changes in degradative ubiquitination in response to proteasome inhibition in the multiple myeloma cell line MM.1S. Following proteasome inhibition with lactacystin, CUT and RUN assays were carried out to determine the genomic locations of ubiquitin in multiple myeloma cells stably expressing a flagged version of ubiquitin (MM.1S-3XFlag Ubiquitin cells). In addition, we report the DNA binding locations of the transcription factor c-MYC in basal conditions in MM.1S parental cells.
Project description:We performed genome-wide DNA methylation profiling of KMS11, MM.1S, and RPMI8226 multiple myeloma cell lines to identify methylation changes distinct to each cell line
Project description:Purpose: We report the NGS-derived transcriptome profiling (paired-end RNA-seq) following proteasome inhibition in the multiple myeloma cell line MM.1S. Methods: MM.1S cells were treated for six hours with the synthetic proteasome inhibitor lactacystin or clinically-approved proteasome inhibitor bortezomib and RNA expression changes were quantified and compared to DMSO control-treated cells by RNA-sequencing.
Project description:We performed Illumina Infinium whole-genome SNP-CN profiling of KMS11, MM.1S, and RPMI8226 multiple myeloma cell lines to detect gene copy number variants distinct to each cell line
Project description:Purpose: We report the NGS-derived transcriptome profiling (paired-end RNA-seq) following proteasome inhibition in the multiple myeloma cell line MM.1S. Methods: MM.1S cells were treated for six hours with the synthetic proteasome inhibitor lactacystin and RNA expression changes were quantified and compared to DMSO control-treated cells by RNA-sequencing.
Project description:Multiple myeloma (MM) evolves from highly prevalent premalignant condition termed Monoclonal Gammopathy of Undetermined Significance (MGUS). We report an MGUS-MM phenotype arising in transgenic mice with Emu-directed expression of the unfolded protein/ER stress response and plasma cell development spliced isoform factor XBP-1s. Emu-XBP-1s elicited elevated serum Ig and IL-6 levels, skin alterations and with advancing age, a significant proportion of Emu-xbp-1s transgenic mice develop features diagnostic of human MM including bone lytic lesions. Transcriptional profiles of Emu-xbp-1s B lymphoid and MM cells show aberrant expression of genes known to be dysregulated in human MM including Cyclin D1, MAF, MAFB, and APRIL. This genetic model coupled with documented frequent XBP-1s overexpression in human MM serve to implicate chronic XBP-1s dysregulation in the development of this common and lethal malignancy. Keywords: XBP-1, MGUS, multiple myeloma, transgenic mouse
Project description:Conventional anti-cancer drug screening is typically performed in the absence of accessory cells (e.g. stromal cells) of the tumor microenvironment, which can profoundly alter anti-tumor drug activity. To address this major limitation, we have developed assays (e.g. the tumor cell-specific in vitro bioluminescence imaging (CS-BLI) assay) to selectively quantify tumor cell viability, in presence vs. absence of non-malignant stromal cells or drug treatment. These assays have allowed us to identify that neoplastic cells from diverse malignancies exhibit stroma-induced resistance to different anti-tumor agents. In this analysis, we evaluated the molecular changes triggered in myeloma cells by their in vitro interaction with stromal cells. The transcriptional profile of 3 human multiple myeloma (MM) cell lines (MM.1S, MM.1R, INA-6) co-cultured with stromal cells vs. when cultured alone was characterized by oligonucleotide microarray analysis, using the human U133 plus 2.0 Affymetrix GeneChip. Three human multiple myeloma (MM) cell lines (MM.1S, MM.1R, INA-6) stably expressing green fluorescent protein (GFP) were cultured in vitro for 24hrs either alone or in the presence of the human bone marrow stromal cell line HS-5. Fluorescence activated cell sorting was used to separate the GFP+ MM cells from GFP- stromal cells. The gene expression profiles of MM cells after their co-culture with stromal cells were compared with the profiles of MM cells cultured alone, according to previously described protocols for total RNA extraction and purification; cDNA synthesis; production of biotin-labeled cRNA; hybridization of cRNA with U133plus2.0 Affymetrix gene chips; and scanning of image output files. Scanned image output files were analyzed using DNA-Chip Analyzer (dChip) (www.dchip.org), including conversion to DCP files, normalization and modeling, and averaging of duplicate chips according to standard parameters recommended by the software. For each cell line, the gene expression profile in the presence of stomal cells was compared to the profile of the same cell line cultured in the absence of stromal cells. Technical replicates for each condition were analyzed (total of 12 gene expression profiles).
Project description:To investigate the role of iron(FeAc) on bortezomib-induced drug resistance of multiple myeloma cells, we administrated MM.1S with iron and bortezomib