Project description:Laminin-5 gamma-2 (LAMC2) is highly expressed in anaplastic thyroid carcinoma and associated with tumor progression, migration and invasion by modulating signaling of EGFR LAMC2 was highly expressed in ATC samples and cell lines compared to normal thyroid tissues. Silencing LAMC2 by shRNA in ATC cells moderately inhibited cell growth in liquid culture and dramatically decreased growth in soft agar and in xenografts growing in immunodeficient mice. Silencing LAMC2 caused cell cycle arrest and significantly suppressed migration, invasion and wound healing of ATC cells. Rescue experiments by overexpressing LAMC2 in LAMC2 knockdown cells, reversed the inhibitory effects as shown by increased cell proliferation and colony formation. Microarray data demonstrated that LAMC2 shRNA significantly altered expression of genes associated with migration, invasion, proliferation and survival. Immunoprecipitation studies showed that LAMC2 was bound to EGFR in ATC cells. Silencing of LAMC2 partially blocked EGF-mediated activation of EGFR and its downstream pathway. Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy having no effective treatment. Laminin subunit gamma-2 (LAMC2) is an epithelial basement membrane protein involved in cell migration and tumour invasion and might represent an ideal target for the development of novel therapeutic approaches for ATC. LAMC2 was highly expressed in ATC samples and cell lines compared to normal thyroid tissues. Silencing LAMC2 by shRNA in ATC cells moderately inhibited cell growth in liquid culture and dramatically decreased growth in soft agar and in xenografts growing in immunodeficient mice. Silencing LAMC2 caused cell cycle arrest and significantly suppressed migration, invasion and wound healing of ATC cells. Rescue experiments by overexpressing LAMC2 in LAMC2 knockdown cells, reversed the inhibitory effects as shown by increased cell proliferation and colony formation. Microarray data demonstrated that LAMC2 shRNA significantly altered expression of genes associated with migration, invasion, proliferation and survival. Immunoprecipitation studies showed that LAMC2 was bound to EGFR in ATC cells. Silencing of LAMC2 partially blocked EGF-mediated activation of EGFR and its downstream pathway. LAMC2 was highly expressed in ATC samples and cell lines compared to normal thyroid tissues. Silencing LAMC2 by shRNA in ATC cells moderately inhibited cell growth in liquid culture and dramatically decreased growth in soft agar and in xenografts growing in immunodeficient mice. Silencing LAMC2 caused cell cycle arrest and significantly suppressed migration, invasion and wound healing of ATC cells. Rescue experiments by overexpressing LAMC2 in LAMC2 knockdown cells, reversed the inhibitory effects as shown by increased cell proliferation and colony formation. Microarray data demonstrated that LAMC2 shRNA significantly altered expression of genes associated with migration, invasion, proliferation and survival. Immunoprecipitation studies showed that LAMC2 was bound to EGFR in ATC cells. Silencing of LAMC2 partially blocked EGF-mediated activation of EGFR and its downstream pathway. Anaplastic thyroid carcinoma cell lines (HTH83 and TL3) were infected with scrambled shRNA and LAMC2 shRNA and stable clones from each cell line were generated and used for RNA extraction and hybridization on Illumina Microarray. We compared scrambled shRNA stable cells with LAMC2 shRNA stable cells.
Project description:Laminin-5 gamma-2 (LAMC2) is highly expressed in anaplastic thyroid carcinoma and associated with tumor progression, migration and invasion by modulating signaling of EGFR LAMC2 was highly expressed in ATC samples and cell lines compared to normal thyroid tissues. Silencing LAMC2 by shRNA in ATC cells moderately inhibited cell growth in liquid culture and dramatically decreased growth in soft agar and in xenografts growing in immunodeficient mice. Silencing LAMC2 caused cell cycle arrest and significantly suppressed migration, invasion and wound healing of ATC cells. Rescue experiments by overexpressing LAMC2 in LAMC2 knockdown cells, reversed the inhibitory effects as shown by increased cell proliferation and colony formation. Microarray data demonstrated that LAMC2 shRNA significantly altered expression of genes associated with migration, invasion, proliferation and survival. Immunoprecipitation studies showed that LAMC2 was bound to EGFR in ATC cells. Silencing of LAMC2 partially blocked EGF-mediated activation of EGFR and its downstream pathway. Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy having no effective treatment. Laminin subunit gamma-2 (LAMC2) is an epithelial basement membrane protein involved in cell migration and tumour invasion and might represent an ideal target for the development of novel therapeutic approaches for ATC. LAMC2 was highly expressed in ATC samples and cell lines compared to normal thyroid tissues. Silencing LAMC2 by shRNA in ATC cells moderately inhibited cell growth in liquid culture and dramatically decreased growth in soft agar and in xenografts growing in immunodeficient mice. Silencing LAMC2 caused cell cycle arrest and significantly suppressed migration, invasion and wound healing of ATC cells. Rescue experiments by overexpressing LAMC2 in LAMC2 knockdown cells, reversed the inhibitory effects as shown by increased cell proliferation and colony formation. Microarray data demonstrated that LAMC2 shRNA significantly altered expression of genes associated with migration, invasion, proliferation and survival. Immunoprecipitation studies showed that LAMC2 was bound to EGFR in ATC cells. Silencing of LAMC2 partially blocked EGF-mediated activation of EGFR and its downstream pathway. LAMC2 was highly expressed in ATC samples and cell lines compared to normal thyroid tissues. Silencing LAMC2 by shRNA in ATC cells moderately inhibited cell growth in liquid culture and dramatically decreased growth in soft agar and in xenografts growing in immunodeficient mice. Silencing LAMC2 caused cell cycle arrest and significantly suppressed migration, invasion and wound healing of ATC cells. Rescue experiments by overexpressing LAMC2 in LAMC2 knockdown cells, reversed the inhibitory effects as shown by increased cell proliferation and colony formation. Microarray data demonstrated that LAMC2 shRNA significantly altered expression of genes associated with migration, invasion, proliferation and survival. Immunoprecipitation studies showed that LAMC2 was bound to EGFR in ATC cells. Silencing of LAMC2 partially blocked EGF-mediated activation of EGFR and its downstream pathway.
Project description:Sub-genomewide shRNA libraries were constructed using the current RNAi consortium constructs as well as using the DSIR (siRNA algoirthm) and a novel shRNA specific algorithm (shERWOOD). All libraries were placed into mir30 expression vectors. The shERWOOD libraries were also placed in a vector harboring an optimized mir cassette (ultramir). Each library was screened using the pancreatic cell line A385. A concensus set of essential genes identified as the set for which two shRNAs depleted in each of the libries. For these genes, a great percentage of shERWOOD seletected shRNA depleted. In addition the placement of shERWOOD selected constructs into ultramir scaffoled increased the rate of shRNA depletion for essential genes further. Purpose: shRNA screens were carried out using various library construction strategies to identify the strategy that provides the best shRNA screening results. Method: Libraries were constructed using the TRC shRNA set as well as shRNAs identified using the DSIR and shERWOOD algorithms. shRNA libraries were cloned into mir30 expression vectors. shERWOOD shRNAs were also cloned into an expression vector harboring an optimized microRNA scaffold termed ultramir. Each resultant library was screened using the pancreatic cell line A385. Each library was analyzed separately to identify a set of genes where at least two shRNAs depleted. These gene sets were intersected to develop a set of essential genes. Results: The shERWOOD shRNA libraries provided the highest number depleting shRNAs for each essential gene. Further these shRNAs depleted to a greater extent than did the shRNAs from the other libraries. When shERWOOD libraries were placed into the ultramir cassette a greater number of shRNAs per essential gene depleted.
Project description:Sub-genomewide shRNA libraries were constructed using the current RNAi consortium constructs as well as using the DSIR (siRNA algoirthm) and a novel shRNA specific algorithm (shERWOOD). All libraries were placed into mir30 expression vectors. The shERWOOD libraries were also placed in a vector harboring an optimized mir cassette (ultramir). Each library was screened using the pancreatic cell line A385. A concensus set of essential genes identified as the set for which two shRNAs depleted in each of the libries. For these genes, a great percentage of shERWOOD seletected shRNA depleted. In addition the placement of shERWOOD selected constructs into ultramir scaffoled increased the rate of shRNA depletion for essential genes further.
Project description:Transcriptome analysis of BORIS depleted MCF7 cells To delineate the alternative pre-mRNA splicing program mediated by BORIS in breast cancer cells, BORIS was depleted in MCF7 using shRNA, and the resultant changes in alternative pre-mRNA splicing and mRNA expression pattern was profiled using Affymetrix Human Transcriptome 2.0 Array
Project description:DAZAP1 was depleted in culterd HEK 293T cells using shRNA and the resulting poly A RNA were isolated c-DNA library constructed and paired end sequenced on illumina Hi-seq 2000 platform the data was compared to a control shRNA depleted cell
Project description:To investigate the effect of HMGA1 in pancreatic cancer. Here we established E3LZ10.7 cell lines in which HMGA1 has been knocked down by shRNA. We then performed gene expression profiling analysis using data obtained from RNA-seq
Project description:DAZAP1 was depleted in culterd HEK 293T cells using shRNA and the resulting poly A RNA were isolated c-DNA library constructed and paired end sequenced on illumina Hi-seq 2000 platform the data was compared to a control shRNA depleted cell Gene expression and splicing switches upon DAZAP1 knockdown