Genome-wide investigation of Pasteurella multocida identifies the stringent response as a negative regulator of hyaluronic acid capsule production
Ontology highlight
ABSTRACT: Pasteurella multocida is a Gram-negative capsulated bacterium responsible for a range of diseases that cause severe morbidity and mortality in livestock animals. The hyaluronic acid (HA) capsule produced by P. multocida serogroup A strains is a critical virulence factor. In this study, we utilised transposon-directed insertion site sequencing (TraDIS) to identify genes essential for in vitro growth of P. multocida, and combined TraDIS with discontinuous density gradients (TraDISort) to identify genes required for HA capsule production and regulation in this pathogen. Analysis of mutants with a high cell density phenotype, indicative of the loss of extracellular capsule, led to the identification of 69 genes important for capsule production. These genes included all previously characterized genes in the capsule biosynthesis locus, and fis and hfq that encode known positive regulators of P. multocida capsule. Many of the other capsule-associated genes identified in this study were involved in regulation or activation of the stringent response, including spoT and relA that encode proteins that regulate the concentration of guanosine alarmones. Disruption of the autoregulatory domains in the C-terminal half of SpoT using insertional mutagenesis resulted in reduced expression of capsule biosynthesis genes and an acapsular phenotype. Overall, these findings have greatly increased the understanding of hyaluronic acid capsule production and regulation in P. multocida.
Project description:P. multocida is the causative agent of a wide range of diseases of animals, including fowl cholera in birds. Fowl cholera isolates of P. multocida generally express a capsular polysaccharide composed of hyaluronic acid. There have been reports of spontaneous capsule loss in P. multocida fowl cholera-causing strains but the mechanism by which this occurs has not been determined. In this study, we identified three independent strains that had spontaneously lost the ability to produce capsular polysaccharide. Quantitative RT-PCR showed that these strains had significantly reduced transcription of the capsule biosynthetic genes, but DNA sequence analysis identified no mutations within the cap biosynthetic locus. However, whole genome sequencing of paired capsulated and acapsular strains identified a single nucleotide polymorphism within fis that was present only in the acapsular strain. Sequencing of fis from two independently derived spontaneous acapsular strains showed that each contained a mutation within fis. Complementation of these strains with an intact copy of fis returned normal capsule expression to all strains. Therefore, expression of a functional Fis protein is absolutely required for normal capsule expression in P. multocida.DNA microarray studies comparing one of the acapsular pairs (AL114 to AL1115) identified approximately 30 genes as down-regulated in the mutant; including pfh_B2 which encodes the filamentous hemagglutinin, a known P. multocida virulence factor and the cross protective surface antigen plpE. Biological triplicates of each strain were analysed in a single colour experimental design
Project description:P. multocida is the causative agent of a wide range of diseases of animals, including fowl cholera in birds. Fowl cholera isolates of P. multocida generally express a capsular polysaccharide composed of hyaluronic acid. There have been reports of spontaneous capsule loss in P. multocida fowl cholera-causing strains but the mechanism by which this occurs has not been determined. In this study, we identified three independent strains that had spontaneously lost the ability to produce capsular polysaccharide. Quantitative RT-PCR showed that these strains had significantly reduced transcription of the capsule biosynthetic genes, but DNA sequence analysis identified no mutations within the cap biosynthetic locus. However, whole genome sequencing of paired capsulated and acapsular strains identified a single nucleotide polymorphism within fis that was present only in the acapsular strain. Sequencing of fis from two independently derived spontaneous acapsular strains showed that each contained a mutation within fis. Complementation of these strains with an intact copy of fis returned normal capsule expression to all strains. Therefore, expression of a functional Fis protein is absolutely required for normal capsule expression in P. multocida.DNA microarray studies comparing one of the acapsular pairs (AL114 to AL1115) identified approximately 30 genes as down-regulated in the mutant; including pfh_B2 which encodes the filamentous hemagglutinin, a known P. multocida virulence factor and the cross protective surface antigen plpE.
Project description:Genome-wide investigation of Pasteurella multocida identifies the stringent response as a negative regulator of hyaluronic acid capsule production
Project description:Cutaneous T-cell lymphoma (CTCL) is a type of non-Hodgkin lymphoma that primarily affects the skin rich in hyaluronic acid(HA). HA composes extracellular matrix in the dermis, which likely affects the development of CTCL but is poorly understood. Here, we show that low molecular weight HA (LMWHA) possibly exacerbates CTCL in mouse and human specimens, and bexarotene already being used in CTCL treatment can decrease HA production. Patients’ serum and skin sections showed higher HA expression than healthy controls. HA extracted from the skin of mice inoculated with tumors showed an increase in LMWHA. LMWHA increased lymphoma cell proliferation in vitro and accelerated tumor formation in mice in vivo. LMWHA also created a favorable environment for tumor cells by influencing fibroblasts, vascular endothelial cells, and tumor-associated macrophages. Together, increased HA, mainly LMW aids in CLCL progression by affecting tumor cells and microenvironment. Next, bexarotene treatment reduced the amount of total HA in murine tumor-inoculated skin and the supernatant of cultured normal human dermal fibroblasts (NHDFs) and HuT78 cells. Detailed in vitro assessments showed that bexarotene treatment decreased hyaluronic acid synthase (HAS) 1 and HAS2 expression in NHDFs and HAS1, HAS3, and CEMIP in HuT78. Chromatin immunoprecipitation assay revealed bexarotene reduced retinoid X receptor-alpha binding to the HAS1 and HAS2 promoters in NHDFs. Bexarotene potentially exerts its anti-tumor effect by reducing HA through decreased expression of HA synthase. These findings provide us with new insights into the developmental process of CLCT and additional insight into bexarotene treatment.
Project description:Hydrocortisone (HC) and triiodothyronine (T3) have both been shown to be capable of independently inhibiting hyaluronate (HA, hyaluronic acid) synthesis in a self-assembled human dermal equivalent (human dermal matrix). We sought to investigate the action of these two hormones in concert on extracellular matrix formation and HA inhibition in a tissue engineered human dermal matrix.
Project description:In this study, transcriptomic analysis of the P. multocida strain VP161 revealed a putative sRNA with high identity to GcvB from Escherichia coli and Salmonella enterica serovar Typhimurium. High-throughput quantitative liquid proteomics was used to compare the proteomes of the P. multocida VP161 wild-type strain, a gcvB mutant and a GcvB overexpression strain. These analyses identified 47 proteins that displayed significant differential production after inactivation of gcvB, 37 of which showed increased production. Thus, GcvB predominantly acts to negatively regulate protein production in P. multocida. Of the 37 proteins that were repressed by GcvB, 27 were predicted to be involved in amino acid biosynthesis or transport. Bioinformatic analyses of putative P. multocida GcvB target mRNAs identified a strongly conserved 10 nucleotide consensus sequence, 5’‑AACACAACAT-3’, with the central eight nucleotides identical to the seed binding region present within GcvB mRNA targets in E. coli and S. Typhimurium.
Project description:Abundant high molecular weight hyaluronic acid (HMW-HA) contributes to cancer resistance and possibly longevity of the longest-lived rodent, the naked mole-rat1,2. To study whether the benefits of increased HMW-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHAS2). nmrHAS2 mice showed increase in hyaluronan levels in several tissues, and lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHAS2 mice shifted towards that of longer-lived species. The most striking change observed in nmrHAS2 mice was attenuated inflammation across multiple tissues. HMW-HA reduced inflammation via several pathways including direct immunoregulatory effect on immune cells, protection from oxidative stress, and improved gut barrier function during aging. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exploited to other species, and open new avenues for using HMW-HA to improve lifespan and healthspan.
Project description:Abundant high molecular weight hyaluronic acid (HMW-HA) contributes to cancer resistance and possibly longevity of the longest-lived rodent, the naked mole-rat1,2. To study whether the benefits of increased HMW-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHAS2). nmrHAS2 mice showed increase in hyaluronan levels in several tissues, and lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHAS2 mice shifted towards that of longer-lived species. The most striking change observed in nmrHAS2 mice was attenuated inflammation across multiple tissues. HMW-HA reduced inflammation via several pathways including direct immunoregulatory effect on immune cells, protection from oxidative stress, and improved gut barrier function during aging. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exploited to other species, and open new avenues for using HMW-HA to improve lifespan and healthspan.
Project description:Abundant high molecular weight hyaluronic acid (HMW-HA) contributes to cancer resistance and possibly longevity of the longest-lived rodent, the naked mole-rat1,2. To study whether the benefits of increased HMW-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHAS2). nmrHAS2 mice showed increase in hyaluronan levels in several tissues, and lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHAS2 mice shifted towards that of longer-lived species. The most striking change observed in nmrHAS2 mice was attenuated inflammation across multiple tissues. HMW-HA reduced inflammation via several pathways including direct immunoregulatory effect on immune cells, protection from oxidative stress, and improved gut barrier function during aging. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exploited to other species, and open new avenues for using HMW-HA to improve lifespan and healthspan