Analysis of small ncRNAs in stool samples from ASD patients
Ontology highlight
ABSTRACT: Intestinal microorganisms impact on health maintaining gut homeostasis and shaping the host immunity, while gut dysbiosis associates with many conditions including autism, a complex neurodevelopmental disorder with multifactorial aetiology. In autism, gut dysbiosis correlates with symptom severity and is characterized by a reduced bacterial variability and a diminished beneficial commensal relationship. Microbiota can influence the expression of host microRNAs that, in turn, regulate the growth of intestinal bacteria by means of bidirectional host-gut micro-biota cross-talk. We investigated possible interactions among intestinal microbes and between them and host transcriptional modulators in autism. To this purpose, we analysed, by “omics” technologies, faecal microbiome, mycobiome and small non-coding-RNAs (particularly miRNAs and piRNAs) of children with autism and neurotypical development. Patients displayed gut dysbiosis, related to a reduction of healthy gut micro- and mycobiota, and up-regulated tran-scriptional modulators. The targets of dysregulated non-coding-RNAs are involved in intestinal permeability, inflammation and autism. Furthermore, microbial families, underrepresented in patients, participate to the production of human essential metabolites negatively influencing the health condition. Here, we propose a novel approach to analyse faeces as a whole and, for the first time, we detected miRNAs and piRNAs in faecal samples of patients with autism.
ORGANISM(S): Homo sapiens
PROVIDER: GSE198199 | GEO | 2022/03/12
REPOSITORIES: GEO
ACCESS DATA