Project description:In solid tumors, quiescent/G0 cell populations likely play important roles in maintaining cellular heterogeneity and promoting recurrence after stand of care. However, little is known about the mechanisms of tumor cell G0 ingress and egress. To discover regulators of G0-like states for glioblastoma (GBM), we performed a genome-wide CRISPR-Cas9 screen in patient-derived GBM stem-like cells (GSCs) for genes that when inhibited trap cells in G0-like states. We identify the protein acetyltransferase KAT5 as a key regulator of G0 and cell cycle dynamics in GSCs and GSC-derived tumors. In primary gliomas, KAT5low cells display quiescent properties, while overall KAT5 activity increases as tumors become more aggressive. Further, we find that KAT5 activity suppresses the emergence of non-dividing subpopulations with oligodendrocyte progenitor and radial glial cell characteristics both in vitro and in a GSC tumor model. These results reveal that KAT5 activity regulates transitions between non-dividing, neurodevelopmental, and proliferative states in GBM tumors.
Project description:In solid tumors, quiescent/G0 cell populations likely play important roles in maintaining cellular heterogeneity and promoting recurrence after stand of care. However, little is known about the mechanisms of tumor cell G0 ingress and egress. To discover regulators of G0-like states for glioblastoma (GBM), we performed a genome-wide CRISPR-Cas9 screen in patient-derived GBM stem-like cells (GSCs) for genes that when inhibited trap cells in G0-like states. We identify the protein acetyltransferase KAT5 as a key regulator of G0 and cell cycle dynamics in GSCs and GSC-derived tumors. In primary gliomas, KAT5low cells display quiescent properties, while overall KAT5 activity increases as tumors become more aggressive. Further, we find that KAT5 activity suppresses the emergence of non-dividing subpopulations with oligodendrocyte progenitor and radial glial cell characteristics both in vitro and in a GSC tumor model. These results reveal that KAT5 activity regulates transitions between non-dividing, neurodevelopmental, and proliferative states in GBM tumors.