Therapeutically enabled mammalian kidney repair and regeneration
Ontology highlight
ABSTRACT: The kidney has large regenerative capacity that is impeded when injured renal tubular epithelial cells (TECs) undergo SNAI1-driven partial epithelial mesenchymal transition (pEMT). Here we investigate the role of IL11 in TEC pEMT and kidney repair. Wild-type mice with acute kidney injury (AKI) upregulate IL11 in TECs triggering an ERK/P90RSK/GSK3β axis of SNAI1 expression leading to impaired renal function, which is abrogated in Il11 null mice. In mouse models of AKI, a neutralizing IL11 antibody promotes kidney regeneration, while attenuating pEMT, fibrosis and kidney dysfunction. In TECs, TGFβ1 induces autocrine IL11/ERK-dependent pEMT leading to paracrine, IL11-mediated fibroblast activation. Mice with TEC-specific deletion of Il11ra1 are protected from pEMT, inflammation, fibrosis and renal failure. In a mouse model of chronic kidney disease, administration of anti-IL11 reverses fibrosis, regenerates kidney parenchyma and restores renal function. Therapeutic inhibition of IL11 signaling appears permissive for promoting kidney regeneration and improving kidney function.
ORGANISM(S): Homo sapiens
PROVIDER: GSE199080 | GEO | 2022/11/17
REPOSITORIES: GEO
ACCESS DATA