The miRNA expression profiles of serum microvesicles in acute ischemic stroke patients and healthy controls using high-throughput sequencing
Ontology highlight
ABSTRACT: Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived retinal transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis Methods: The serum microvesicles of five acute ischemic stroke (AIS) and healthy controls was purified using Ribo™ Exosome Isolation Reagent (C10110-2, RIBOBIO, Guangzhou, China) and analyzed by flow cytometry and nanoparticle tracking analysis (NTA).The miRNA expression profiles of serum microvesicles of five acute ischemic stroke (AIS) and healthy controls were detected by RNA-seq using llumina HiSeqTM 2500. Results: Using an optimized data analysis workflow, 732 miRNA species were detected in total. The levels of 51 individual miRNA species were significantly different between AIS patients and healthy controls. Conclusions: Our study represents the first detailed analysis of miRNA expression profiles of serum microvesicles in AIS and healthy controls, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of miRNA content in serum microvesicles. We conclude that RNA-seq based non-coding RNA characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.
ORGANISM(S): Homo sapiens
PROVIDER: GSE199942 | GEO | 2022/04/04
REPOSITORIES: GEO
ACCESS DATA