Resident Macrophage Subpopulations Occupy Distinct Microenvironments in the Kidney
Ontology highlight
ABSTRACT: The kidney contains a population of resident macrophages from birth that expands as it grows and forms a contiguous network throughout the tissue. Kidney resident macrophages (KRMs) are important in homeostasis and the response to acute kidney injury (AKI). While the kidney contains many microenvironments, it is unknown whether KRMs are a heterogeneous population differentiated by function and location. We combined single-cell RNA sequencing (scRNAseq), spatial transcriptomics, flow cytometry, and immunofluorescence imaging to localize, characterize, and validate KRM populations during quiescence and following 19 minutes of bilateral ischemic kidney injury. scRNAseq and spatial transcriptomics revealed seven distinct KRM subpopulations, which are organized into zones corresponding to regions of the nephron. Each subpopulation was identifiable by a unique transcriptomic signature suggesting distinct functions. Specific protein markers were identified for two clusters allowing analysis by flow cytometry or immunofluorescence imaging. Following injury, the original localization of each subpopulation is lost, either from changing locations or transcriptomic signatures. The original spatial distribution of KRMs is not fully restored for at least 28 days post-injury. The change in KRM localization confirms a long hypothesized dysregulation of the local immune system following acute injury and may explain the increased risk for chronic kidney disease.
ORGANISM(S): Mus musculus
PROVIDER: GSE200115 | GEO | 2022/09/07
REPOSITORIES: GEO
ACCESS DATA