Project description:This SuperSeries is composed of the following subset Series: GSE20045: A mesoderm-derived mesenchymal stem/stromal cells (MSC) precursor: time course experiment GSE20046: A mesoderm-derived mesenchymal stem/stromal cells (MSC) precursor: stages of development experiment Refer to individual Series
Project description:Mesenchymal stem/stromal cells (MSCs) are multipotent cells that can differentiate into a variety of cell types forming connective tissue and skeleton, and are essential participants in the development of all organs. However, MSC precursors remain largely unknown. In human embryonic stem cells (hESCs) directed to mesendodermal differentiation through coculture with OP9 stromal cells, we identified a population of mesodermal cells by surface expression of apelin receptor (APLNR1). APLNR+ cells were enriched with precursors generating compact spheroid colonies in semisolid suspension culture. Being formed by single cells, these colonies consisted of a uniform population of mesenchymal cells with a transcriptional profile representative of embryonic mesenchyme originating from lateral plate/extraembryonic mesoderm. Mesenchymal colony formation required serum-free medium and FGF2 as a colony-forming factor, could be significantly enhanced by PDGF-BB, but suppressed by VEGF. When transferred to the adherent cultures in serum-free medium with FGF2, individual colonies gave rise to multipotential mesenchymal cell lines with typical phenotype (CD146+CD105+CD73+CD31-CD43-CD45-), differentiation (chondro-, osteo-, and adipogenesis) and proliferation (>80 doublings) potentials. Consistent with lineage-restricted differentiation pattern, neither endothelial nor hematopoietic cells could be produced from adherent mesenchymal cultures, however endothelial cells could be derived from mesenchymal colonies in the early days of colony-forming culture suggesting that mesenchymal cells arose from cells with primary angiogenic potential (mesangioblasts). Together these studies identified mesangioblasts as the earliest clonogenic mesenchymal precursors at this stage of their specification from mesoderm. This set (8 samples) of expression data is a time-course experiment of hESC (H1) differentiated in OP9 coculture for 1-7 days.
Project description:Mesenchymal stem/stromal cells (MSCs) are multipotent cells that can differentiate into a variety of cell types forming connective tissue and skeleton, and are essential participants in the development of all organs. However, MSC precursors remain largely unknown. In human embryonic stem cells (hESCs) directed to mesendodermal differentiation through coculture with OP9 stromal cells, we identified a population of mesodermal cells by surface expression of apelin receptor (APLNR1). APLNR+ cells were enriched with precursors generating compact spheroid colonies in semisolid suspension culture. Being formed by single cells, these colonies consisted of a uniform population of mesenchymal cells with a transcriptional profile representative of embryonic mesenchyme originating from lateral plate/extraembryonic mesoderm. Mesenchymal colony formation required serum-free medium and FGF2 as a colony-forming factor, could be significantly enhanced by PDGF-BB, but suppressed by VEGF. When transferred to the adherent cultures in serum-free medium with FGF2, individual colonies gave rise to multipotential mesenchymal cell lines with typical phenotype (CD146+CD105+CD73+CD31-CD43-CD45-), differentiation (chondro-, osteo-, and adipogenesis) and proliferation (>80 doublings) potentials. Consistent with lineage-restricted differentiation pattern, neither endothelial nor hematopoietic cells could be produced from adherent mesenchymal cultures, however endothelial cells could be derived from mesenchymal colonies in the early days of colony-forming culture suggesting that mesenchymal cells arose from cells with primary angiogenic potential (mesangioblasts). Together these studies identified mesangioblasts as the earliest clonogenic mesenchymal precursors at this stage of their specification from mesoderm.
Project description:Mesenchymal stem/stromal cells (MSCs) are multipotent cells that can differentiate into a variety of cell types forming connective tissue and skeleton, and are essential participants in the development of all organs. However, MSC precursors remain largely unknown. In human embryonic stem cells (hESCs) directed to mesendodermal differentiation through coculture with OP9 stromal cells, we identified a population of mesodermal cells by surface expression of apelin receptor (APLNR1). APLNR+ cells were enriched with precursors generating compact spheroid colonies in semisolid suspension culture. Being formed by single cells, these colonies consisted of a uniform population of mesenchymal cells with a transcriptional profile representative of embryonic mesenchyme originating from lateral plate/extraembryonic mesoderm. Mesenchymal colony formation required serum-free medium and FGF2 as a colony-forming factor, could be significantly enhanced by PDGF-BB, but suppressed by VEGF. When transferred to the adherent cultures in serum-free medium with FGF2, individual colonies gave rise to multipotential mesenchymal cell lines with typical phenotype (CD146+CD105+CD73+CD31-CD43-CD45-), differentiation (chondro-, osteo-, and adipogenesis) and proliferation (>80 doublings) potentials. Consistent with lineage-restricted differentiation pattern, neither endothelial nor hematopoietic cells could be produced from adherent mesenchymal cultures, however endothelial cells could be derived from mesenchymal colonies in the early days of colony-forming culture suggesting that mesenchymal cells arose from cells with primary angiogenic potential (mesangioblasts). Together these studies identified mesangioblasts as the earliest clonogenic mesenchymal precursors at this stage of their specification from mesoderm. This set (11 samples) of expression data is sequential stages of MSC development from hESCs (H1), namely ALPNR+ mesodermal precursors isolated on day 2 and day 3 differentiation, mesangioblast (MB) cores (Day 2 H1-derived cores), hemangioblast (HB) cores (day 3 H1-derived cores), mesangioblast (MB) and hemangioblast (HB) colonies, and colony-derived MSC lines at passage 1 and 5.
Project description:Mesenchymal stem/stromal cells (MSCs) are multipotent cells that can differentiate into a variety of cell types forming connective tissue and skeleton, and are essential participants in the development of all organs. However, MSC precursors remain largely unknown. In human embryonic stem cells (hESCs) directed to mesendodermal differentiation through coculture with OP9 stromal cells, we identified a population of mesodermal cells by surface expression of apelin receptor (APLNR1). APLNR+ cells were enriched with precursors generating compact spheroid colonies in semisolid suspension culture. Being formed by single cells, these colonies consisted of a uniform population of mesenchymal cells with a transcriptional profile representative of embryonic mesenchyme originating from lateral plate/extraembryonic mesoderm. Mesenchymal colony formation required serum-free medium and FGF2 as a colony-forming factor, could be significantly enhanced by PDGF-BB, but suppressed by VEGF. When transferred to the adherent cultures in serum-free medium with FGF2, individual colonies gave rise to multipotential mesenchymal cell lines with typical phenotype (CD146+CD105+CD73+CD31-CD43-CD45-), differentiation (chondro-, osteo-, and adipogenesis) and proliferation (>80 doublings) potentials. Consistent with lineage-restricted differentiation pattern, neither endothelial nor hematopoietic cells could be produced from adherent mesenchymal cultures, however endothelial cells could be derived from mesenchymal colonies in the early days of colony-forming culture suggesting that mesenchymal cells arose from cells with primary angiogenic potential (mesangioblasts). Together these studies identified mesangioblasts as the earliest clonogenic mesenchymal precursors at this stage of their specification from mesoderm.
Project description:Among the three embryonic germ layers, the mesoderm is a major source of the mesenchymal precursors giving rise to skeletal and connective tissues, but these precursors have not previously been identified and characterized. Using human embryonic stem cells directed toward mesendodermal differentiation, we show that mesenchymal stem/stromal cells (MSCs) originate from a population of mesodermal cells identified by expression of apelin receptor. In semisolid medium, these precursors form FGF2-dependent compact spheroid colonies containing mesenchymal cells with a transcriptional profile representative of mesoderm-derived embryonic mesenchyme. When transferred to adherent cultures, individual colonies give rise to MSC lines with chondro-, osteo-, and adipogenic differentiation potentials. Although the MSC lines lacked endothelial potential, endothelial cells could be derived from the mesenchymal colonies, suggesting that, similar to hematopoietic cells, MSCs arise from precursors with angiogenic potential. Together, these studies identified a common precursor of mesenchymal and endothelial cells, mesenchymoangioblast, as the source of mesoderm-derived MSCs.
Project description:Gingivae represent a unique soft tissue that serves as a biological barrier to cover the oral cavity side of the maxilla and mandible. Recently, the gingivae were identified as containing mesenchymal stem cells (GMSCs). However, it is unknown whether the GMSCs are derived from cranial neural crest cells (CNCC) or the mesoderm. In this study, we show that around 90% of GMSCs are derived from CNCC and 10% from the mesoderm. In comparison with mesoderm MSCs (M-GMSCs), CNCC-derived GMSCs (N-GMSCs) show an elevated capacity to differentiate into neural cells and chondrocytes and induce activated T-cell apoptosis in vitro. When transplanted into mice with dextran sulfate sodium (DSS)-induced colitis, N-GMSCs showed superior effects in ameliorating inflammatory-related disease phenotype in comparison with the M-GMSC treatment group. Mechanistically, the increased immunomodulatory effect of N-GMSCs is associated with up-regulated expression of FAS ligand (FASL), a transmembrane protein that plays an important role in MSC-based immunomodulation. In summary, our study indicates that the gingivae contain both neural-crest- and mesoderm-derived MSCs with distinctive stem cell properties.