Downstream targeted genes of Satb2 regulate synaptic formation and axonogenesis in developing cerebral cortex [RNA-seq]
Ontology highlight
ABSTRACT: Special AT-rich sequencebinding protein 2 (SATB2) is essential for the development of cerebral cortex and key molecular node for the establishment of proper neural circuitry and function. Mutations in SATB2 gene lead to SATB2-associated syndrome (SAS), which is characterized by abnormal development of skeleton and central nervus system. We generated Satb2 knockout mouse model through CRISPR-Cas9 technology and performed RNA-seq and ChIP-seq of embryonic cerebral cortex. We conducted RT-qPCR, western blot, immunofluorescence staining, luciferase reporter assay and behavioral analysis for experimental verification.
Project description:Special AT-rich sequencebinding protein 2 (SATB2) is essential for the development of cerebral cortex and key molecular node for the establishment of proper neural circuitry and function. Mutations in SATB2 gene lead to SATB2-associated syndrome (SAS), which is characterized by abnormal development of skeleton and central nervus system. We generated Satb2 knockout mouse model through CRISPR-Cas9 technology and performed RNA-seq and ChIP-seq of embryonic cerebral cortex. We conducted RT-qPCR, western blot, immunofluorescence staining, luciferase reporter assay and behavioral analysis for experimental verification.
Project description:The goal of the study was to identify the binding site of SATB2 in wild-ype cortex by performing ChIP-seq using SATB2 antibody. E15 cortical tissues were dissected, lysed and fixed. Chromatin was prepared by sonication. Sequences bound by SATB2 protein was precipitated using a SATB2 antibody. Sequencing was performed on Illumina Genome Analyzer II. SATB2 binding peaks were called using MACS. ChIP for Satb2, followed by sequencing on Illumina Genome Analyzer II platform
Project description:The goal of the study was to identify the binding site of SATB2 in wild-ype cortex by performing ChIP-seq using SATB2 antibody. E15 cortical tissues were dissected, lysed and fixed. Chromatin was prepared by sonication. Sequences bound by SATB2 protein was precipitated using a SATB2 antibody. Sequencing was performed on Illumina Genome Analyzer II. SATB2 binding peaks were called using MACS.
Project description:Induction of lineage-specific gene programs are strongly influenced by alterations in local chromatin architecture. However, key players that impact this genome reorganization remain largely unknown. In our associated paper, we found that the removal of special AT-rich binding protein 2 (SATB2), a nuclear protein that binds matrix attachment regions, is a key event in initiating myogenic differentiation. This study included ChIP-seq analyses to assess the genetic binding sites of SATB2 prior to differentiation and categorize their respective roles within the cell. Furthermore, transcriptome analyses using RNA-seq was conducted on C2C12 cells treated with control siRNA and siRNA against SATB2 prior to differentiation. This was done to assess the changes in transcript expression following the loss of SATB2.
Project description:The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. We show that ectopic expression of SATB2 in normal human bronchial epithelial cell-line BEAS2B increased anchorage-independent growth and cell migration,RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways.
Project description:Induction of lineage-specific gene programs are strongly influenced by alterations in local chromatin architecture. However, key players that impact this genome reorganization remain largely unknown. Here, we report that removal of special AT-rich binding protein 2 (SATB2), a nuclear protein known to bind matrix attachment regions, is a key event in initiating myogenic differentiation. Deletion of myoblast SATB2 in vitro initiates chromatin remodeling and accelerates differentiation, while in vivo ablation depletes the muscle progenitor pool. Genome wide analysis indicates that SATB2 binding influences both chromatin loop and sub-TAD domain formation. These chromatin changes are both repressive and inductive, as loss of SATB2 leads to expression of differentiation regulatory factors and inhibition of genes that impair this process. Finally, we noted that the differentiation-specific decline in SATB2 protein is dependent on a caspase 7-mediated cleavage event. Taken together, this study demonstrates that temporal control of SATB2 protein is critical for shaping the chromatin environment and coordinating the myogenic differentiation program
Project description:Induction of lineage-specific gene programs are strongly influenced by alterations in local chromatin architecture. However, key players that impact this genome reorganization remain largely unknown. Here, we report that removal of special AT-rich binding protein 2 (SATB2), a nuclear protein known to bind matrix attachment regions, is a key event in initiating myogenic differentiation. Deletion of myoblast SATB2 in vitro initiates chromatin remodeling and accelerates differentiation, while in vivo ablation depletes the muscle progenitor pool. Genome wide analysis indicates that SATB2 binding influences both chromatin loop and sub-TAD domain formation. These chromatin changes are both repressive and inductive, as loss of SATB2 leads to expression of differentiation regulatory factors and inhibition of genes that impair this process. Finally, we noted that the differentiation-specific decline in SATB2 protein is dependent on a caspase 7-mediated cleavage event. Taken together, this study demonstrates that temporal control of SATB2 protein is critical for shaping the chromatin environment and coordinating the myogenic differentiation program