High-throughput single-cell transcriptome profiling of tomato leaf
Ontology highlight
ABSTRACT: The occurrence of Tomato chlorosis virus (ToCV) disease seriously damages tomato growth and yield, and there is no effective way to control ToCV transmission. So far, no studies have reported exploring the interaction between ToCV and tomato at the single cellular level. In this study, single cell RNA sequence was performed on a total of 26720 individual cells from healthy and ToCV-infected tomato leaves. We through identifying cell types, the first tomato leaf cell atlas was successfully constructed. In situ hybridization experiments identified specific marker genes that can be used to identify tomato cell types. Moreover, we have characterized transcription factors that may play a key role in tomato response to ToCV infection, and described the trichome differentiation trajectory during ToCV infection through pseudotime analysis. In conclusion, we proved the feasibility of single-cell sequencing to study the response of plants to biotic stress, and put forward new insights into the interaction between ToCV and tomato from the cellular level. Our data will lay the foundation for following studies between ToCV and plants, and will also provide a valuable reference for future research on non-model plant single cells.
ORGANISM(S): Solanum lycopersicum
PROVIDER: GSE201931 | GEO | 2024/05/01
REPOSITORIES: GEO
ACCESS DATA