Project description:Various lung insults can result in replacement of resident alveolar macrophages (AM) by blood monocyte-derived (BMo)-AM. However, the dynamics of this process and its long-term consequences for respiratory viral infections remain unclear. Using several mouse models and a marker to unambiguously track fetal monocyte-derived (FeMo)-AM and BMo-AM, we established the kinetics and extent of replenishment and their function to recurrent influenza virus (IAV) infection. Massive loss of FeMo-AM resulted in rapid replenishment by self-renewal of survivors followed by generation of BMo-AM, which progressively outcompeted FeMo-AM over several months due to increased glycolytic and proliferative capacity. The presence of both naïve and experienced BMo-AM conferred severe pathology to IAV infection, which was associated with a pro-inflammatory phenotype. Furthermore, upon aging of naïve mice, FeMo-AM are gradually replaced by BMo-AM, which contribute to IAV disease severity in a cell autonomous manner. Taken together, our results suggest that origin rather than training of AM determines long-term function to respiratory viral infection and provide an explanation for increased severity in elderly.
Project description:Various lung insults can result in replacement of resident alveolar macrophages (AM) by blood monocyte-derived (BMo)-AM. However, the dynamics of this process and its long-term consequences for respiratory viral infections remain unclear. Using several mouse models and a marker to unambiguously track fetal monocyte-derived (FeMo)-AM and BMo-AM, we established the kinetics and extent of replenishment and their function to recurrent influenza virus (IAV) infection. Massive loss of FeMo-AM resulted in rapid replenishment by self-renewal of survivors followed by generation of BMo-AM, which progressively outcompeted FeMo-AM over several months due to increased glycolytic and proliferative capacity. The presence of both naïve and experienced BMo-AM conferred severe pathology to IAV infection, which was associated with a pro-inflammatory phenotype. Furthermore, upon aging of naïve mice, FeMo-AM are gradually replaced by BMo-AM, which contribute to IAV disease severity in a cell autonomous manner. Taken together, our results suggest that origin rather than training of AM determines long-term function to respiratory viral infection and provide an explanation for increased severity in elderly.
Project description:We evaluated the diagnostic and clinical usefulness of blood specimens to detect Middle East respiratory syndrome coronavirus infection in 21 patients from the 2015 outbreak in South Korea. Viral RNA was detected in blood from 33% of patients at initial diagnosis, and the detection preceded a worse clinical course.
Project description:Antiviral immune mediators, including interferons and their downstream effectors, are critical for host defense yet can become detrimental when uncontrolled. Here, we identify a macrophage-mediated anti-inflammatory mechanism that limits type I interferon (IFN-I) responses. Specifically, we found that cellular stress and pathogen recognition induce Oncostatin M (OSM) production by macrophages. OSM-deficient mice succumbed to challenge with influenza or a viral mimic due to heightened IFN-I activation. Macrophage-derived OSM restricted excessive IFN-I production by lung epithelial cells following viral stimulation. Furthermore, reconstitution of OSM in the respiratory tract was sufficient to protect mice lacking macrophage-derived OSM against morbidity, indicating the importance of local OSM production. This work reveals a host strategy to dampen inflammation in the lung through the negative regulation of IFN-I by macrophages.
Project description:Alveolar macrophages (AMs) are the predominant innate immune cell in the distal respiratory tract. During inflammatory responses, AMs may be supplemented by blood monocytes, which differentiate into monocyte-derived macrophages (MDMs). Macrophages play important roles in a variety of common equine lower airway diseases, including severe equine asthma (SEA). In an experimental model, an inhaled mixture of Aspergillus fumigatus spores, lipopolysaccharide, and silica microspheres (FLS), induced SEA exacerbation in susceptible horses. However, whether equine AMs and MDMs have differing immunophenotypes and cytokine responses to FLS stimulation is unknown. To address these questions, alveolar macrophages/monocytes (AMMs) were isolated from bronchoalveolar lavage fluid and MDMs derived from blood of six healthy horses. Separately, AMMs and MDMs were cultured with and without FLS for six hours after which cell surface marker expression and cytokine production were analyzed by flow cytometry and a bead-based multiplex assay, respectively. Results showed that regardless of exposure conditions, AMMs had significantly higher surface expression of CD163 and CD206 than MDMs. Incubation with FLS induced secretion of IL-1β, IL-8, TNF-α and IFN-γ in AMMs, and IL-8, IL-10 and TNF-α in MDMs. These results suggest that AMMs have a greater proinflammatory response to in vitro FLS stimulation than MDMs, inferring differing roles in equine lung inflammation. Variability in recruitment and function of monocyte-macrophage populations warrant more detailed in vivo investigation in both homeostatic and diseased states.
Project description:Despite the prevalence and clinical importance of influenza, its long-term effect on lung immunity is unclear. Here we describe that following viral clearance and clinical recovery, at 1 month after infection with influenza, mice are better protected from Streptococcus pneumoniae infection due to a population of monocyte-derived alveolar macrophages (AMs) that produce increased interleukin-6. Influenza-induced monocyte-derived AMs have a surface phenotype similar to resident AMs but display a unique functional, transcriptional and epigenetic profile that is distinct from resident AMs. In contrast, influenza-experienced resident AMs remain largely similar to naive AMs. Thus, influenza changes the composition of the AM population to provide prolonged antibacterial protection. Monocyte-derived AMs persist over time but lose their protective profile. Our results help to understand how transient respiratory infections, a common occurrence in human life, can constantly alter lung immunity by contributing monocyte-derived, recruited cells to the AM population.
Project description:Antiviral immune mediators, including interferons and their downstream effectors, are critical for host defense yet can become detrimental when uncontrolled. Here, we identify a macrophage-mediated anti-inflammatory mechanism that limits type I interferon (IFN-I) responses. Specifically, we found that cellular stress and pathogen recognition induce Oncostatin M (OSM) production by macrophages. OSM-deficient mice succumbed to challenge with influenza or a viral mimic due to heightened IFN-I activation. Macrophage-derived OSM restricted excessive IFN-I production by lung epithelial cells following viral stimulation. Furthermore, reconstitution of OSM in the respiratory tract was sufficient to protect mice lacking macrophage-derived OSM against morbidity, indicating the importance of local OSM production. This work reveals a host strategy to dampen inflammation in the lung through the negative regulation of IFN-I by macrophages.