Project description:Fumarate Hydratase (FH) is a mitochondrial enzyme that catalyses the reversible hydration of fumarate to malate in the TCA cycle. Germline mutations of FH lead to HLRCC, a cancer syndrome characterised by a highly aggressive form of renal cancer(1). Although HLRCC tumours metastasise rapidly, FH-deficient mice develop premalignant cysts in the kidneys, rather than carcinomas(2). How Fh1-deficient cells overcome these tumour suppressive events during transformation is unknown. Here, we perform a genome-wide CRISPR/Cas9 screen to identify genes that, when ablated, enhance the proliferation of Fh1-deficient cells. We found that the depletion of the HIRA enhances proliferation and invasion of Fh1-deficient cells in vitro and in vivo. Mechanistically, Hira loss enables the activation of MYC and its target genes, increasing nucleotide metabolism specifically in Fh1-deficient cells, independent of its histone chaperone activity. These results are instrumental for understanding mechanisms of tumorigenesis in HLRCC and the development of targeted treatments for patients.
Project description:Purpose: Identifying transcriptional changes led by Hira loss in FH deficient cells Methods: RNA was extracted from the cell lines using QIAGEN kit folloging the manufacturer instructions. RNA concentrator kit was used to guarantee RNA quality. Results/Conclusion: We identified MYC/E2F1 signatures as the top upregulated ones controlling the oncogenic events occuring in Fh1 and Hira deficient cells.