Project description:The HIRA chaperone complex, comprised of HIRA, UBN1 and CABIN1, collaborates with histone-binding protein ASF1a to incorporate histone variant H3.3 into chromatin in a DNA replication-independent manner. To better understand its function and mechanism, we integrated HIRA, UBN1, ASF1a and histone H3.3 ChIP-seq and gene expression analyses. Most HIRA-binding sites co-localize with UBN1, ASF1a and H3.3 at active promoters and active and weak/poised enhancers. At promoters, binding of HIRA/UBN1/ASF1a correlates with the level of gene expression. HIRA is required for deposition of histone H3.3 at its binding sites. There are marked differences in nucleosome and co-regulator composition at different classes of HIRA-bound regulatory site. Underscoring this, we report novel physical interactions between the HIRA complex and transcription factors, a chromatin insulator and an ATP-dependent chromatin-remodelling complex. Our results map the distribution of the HIRA chaperone across the chromatin landscape and point to different interacting partners at functionally distinct regulatory sites. Examination of 3 histone chaperone proteins in HeLa cells
Project description:The HIRA chaperone complex, comprised of HIRA, UBN1 and CABIN1, collaborates with histone-binding protein ASF1a to incorporate histone variant H3.3 into chromatin in a DNA replication-independent manner. To better understand its function and mechanism, we integrated HIRA, UBN1, ASF1a and histone H3.3 ChIP-seq and gene expression analyses. Most HIRA-binding sites co-localize with UBN1, ASF1a and H3.3 at active promoters and active and weak/poised enhancers. At promoters, binding of HIRA/UBN1/ASF1a correlates with the level of gene expression. HIRA is required for deposition of histone H3.3 at its binding sites. There are marked differences in nucleosome and co-regulator composition at different classes of HIRA-bound regulatory site. Underscoring this, we report novel physical interactions between the HIRA complex and transcription factors, a chromatin insulator and an ATP-dependent chromatin-remodelling complex. Our results map the distribution of the HIRA chaperone across the chromatin landscape and point to different interacting partners at functionally distinct regulatory sites. Examination of H3.3 histone modification in HeLA cells with accompanying FAIRE data
Project description:Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Histone chaperone HIRA deposits nucleosome-destabilizing histone variant H3.3 into chromatin in a DNA replication-independent manner. Histone H3.3 and a subset of other typically M-bM-^@M-^\replication-dependentM-bM-^@M-^] core histones were expressed in non-proliferating senescent cells, the latter linked to alternative mRNA splicing and polyadenylation. Senescent cells incorporated newly-synthesized histones into chromatin, partially dependent on HIRA. HIRA and newly-deposited histone H3.3 co-localized at promoters of expressed genes, and their distribution shifted between proliferating and senescent cells, paralleling changes in gene expression. In senescent cells, gene promoters showed exceptional enrichment of a histone acetylation linked to open and dynamic chromatin, H4K16ac. Abundance of H4K16ac depended on HIRA. In the mouse, inactivation of HIRA downregulated H4K16ac and dramatically enhanced oncogene-induced hyperplasia. To conclude, HIRA controls a previously undefined dynamic non-canonical H4K16ac-decorated chromatin landscape in senescence, and also plays an unanticipated role in suppression of oncogene-induced neoplasia. Examination of HIRA protein binding alongside histone modification H4K16ac and H3.3 in proliferating and senescent IMR90 cells
Project description:TRIM24 PHD-Bromo domains exhibit preferential binding to unmethylated H3K4 and acetylated H3K27. TRIM24 is a co-activator of estrogen receptor (ER). The results suggest that specific ER-binding sites are depleted of H3K4me2 with estrogen treatment. TRIM24 binds these sites preferentially and facilitates ER-regulated gene expression, cell survival and proliferation. ChIP performed on MCF7 cells +/- estrogen with antibodies against ER, TRIM24 and H3K4me2. ChIP assays of ER, co-activator TRIM24 and H3K4me2 were performed with two concentrations of antibody, without and 6h with estrogen treatment of MCF7 cells. Antibody-enriched samples were sequenced two times, and compared to an IgG negative control and Input. Enriched DNA sequenced by Illumina Solexa.
Project description:We show that in vivo MBD2 is mainly recruited to CpG island promoters that are highly methylated. We also report that MBD2 binds to a subset of CpG island promoters that are characterized by the presence of active histone marks and RNA polymerase II (Pol2). At such sites, MBD2 binds downstream of the transcription start site. Active promoters bound by MBD2 show low to medium gene expression levels and H3K36me3 deposition suggesting a putative role for MBD2 in blocking polymerase II (Pol2) elongation at these promoters. To gain further insight into the function of and epigenetic regulation by MBD2 we generated a tagged version of the protein and stably expressed it in the MCF-7 cell line. We mapped genome wide binding of MBD2 by ChIP sequencing (ChIP-seq) and together with base resolution whole genome bisulfite sequencing (WGBS) we were able to determine the methylation content and the role of methylation density at MBD2 enriched regions. We further dissected MBD2 binding properties, taking advantage of a large set of ChIP-seq data including active histone marks, RNA polymerase II (POL2) and strand specific RNA-seq.
Project description:ChIP-seq analysis of elements that specify nucleosome positioning and occupancy, control domains of gene expression, induce repression of the X chromosome, guide mitotic segregation and genome duplication, govern homolog pairing and recombination during meiosis, and organize chromosome positioning within the nucleus. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf ChIP-seq against EPC-1 in L3 stage N2 worms.
Project description:The DNA binding factor Tcf-1 is one of the most prominently expressed genes in thymocytes yet it's global DNA binding pattern remained unknown. Here we have assessed by ChIP-seq the Tcf-1 binding pattern in murine thymocytes. Tcf-1 ChIP-seq of 1 sample and input control.
Project description:To annotate the regulatory elements in the renal tubule epithelial cells, we profiled 6 histone ChIP-seq in the human kidney epithelical cells (HKC8). We pulled down the DNA with specific antibodies of interests against histone tail modifications in the human rebal tubule epithelial cells. The result can be interpretated with ChromHMM for different states.
Project description:Here we used ChIP-MS to quantitatively profile chromatin-associated proteins that are specifically associated with H3K4me1- and H3K4me3-modified nucleosomes in IMR-90 chromatin.
Project description:The INO80 complex is a chromatin remodeler that regulates DNA replication, repair, and transcription. Although the INO80 complex plays a crucial role in various chromatin-associated processes, the mechanism of its recruitment to specific genomic loci is not well understood. Here we used a native ChIP-MS approach to quantitatively profile modifications present on nucleosomes co-purified with INO80 from MNAse-digested HeLa chromatin.