Transcriptomic responses of caddisfly Dicosmoecus gilvipes to temperature.
Ontology highlight
ABSTRACT: These samples are from RNA collected from specimens held at 4 temperatures (15.5, 20.0, 25.0 and 28.6degC). Specimens were ramped to one of those temperatures over 4 days following a common garden at 11degC for two weeks. RNA was extracted from thorax tissue and used for RNA-seq. Genes with statistically different expression levels among temperatures were identified.
Project description:This was a comparative transcriptome analysis by using high throughput sequencing. To assess the effects of heat stress on maize alternative splicing we used a controlled environment facility called the Enviratron to simulate field conditions. For our experiments, maize plants were subjected to conditions simulating normal diurnal rhythms of light and temperature, with increasing maximal daily temperature (MDT). Maize plants were grown continuously under four different temperature regimes with simulated morning temperatures ramped up over 6 hr to the MDT of 31°C, 33°C, 35°C or 37°C and simulated evening/night time temperatures ramped down over 8 hr to 10°C below the MDT. We tracked the alternative splicing events of maize W22 seedlings grow under different temperatures (MDT of 31°C, 33°C, 35°C or 37°C) to evaluate how different MDTs affect the program of gene alternative splicing in maize. RNA was extracted from small strips of leaf lamina excised from the first fully expanded leaf of V4 and V5 W22 plants (at 20 and 27 DAG, respectively). Plants were sampled in triplicates.
Project description:This experiment was designed to investigate the impacts of non-lethal increases in temperature on the anti-viral transcriptomic response of Atlantic cod. Selected genes identified as differentially expressed between samples injected with pIC but held at different temperatures were validated using QPCR.
Project description:This is a study to characterize gene expression profiles in stored Russet Burbank potato tubers. Tubers were harvested from commercial fields in the central sands region of Wisconsin in the fall of 2006. The tubers were put into storage at 55 degrees F for preconditioning and wound healing. Shortly after the temperature of the storage bin began to decrease, uniform, healthy tubers were selected for use in this microarray analysis. Tubers were at 53.6 degrees F at this time, and pieces of starch-storing tissue were collected for use as the reference sample. Other tubers were moved to temperature-controlled lockers and these were cooled gradually to either 48 or 40 degrees F following industry standard procedures. The expectation was that tubers held at 48 degrees would not have a significant accumulation of glucose and fructose, but that tubers cooled to 40 degrees would undergo low temperature sweetening and accumulate glucose and fructose to a degree that is unsuitable for processing. Three weeks later, when the locker temperatures were 48 degrees F and 41.5 degrees F, tissue samples were collected for RNA analysis. After another three weeks, samples were collected from tubers at 48 degrees F and 40 degrees F. At that time some tubers were moved from the 48 degree locker to the 40 degree locker in order to see if gene expression changes observed as a result of gradual cooling are similar to those that occur following a sudden decrease in temperature. Three weeks later, samples were collected from tubers held at 48 degrees F, tubers held at 40 degrees F, and from the tubers that were moved from 48 to 40 degrees F. At this time another set of tubers was transferred from 48 degrees to 40 degrees. Three weeks later the last samples were harvested from tubers held at 48 degrees F, from tubers held at 48 degrees F and from tubers that were transferred three weeks prior from 48 to 40 degrees. RNA was isolated from tissue extracted from three tubers. Keywords: Reference design
Project description:This experiment was designed to investigate the impacts of non-lethal increases in temperature on the anti-viral transcriptomic response of Atlantic cod. Selected genes identified as differentially expressed between samples injected with pIC but held at different temperatures were validated using QPCR. This was a common reference design. For the common reference each individual sample analyzed in the microarray experiment contributed with equal amounts of RNA to a pool. Sixty individuals were analyzed representing 6 biological replicates from 10 different experimental groups. Two separate control groups were used. Non-injected groups at the final temperatures (i.e. 10°C and 16°C) were used as prior to injection controls. At each time-point and temperatures there was also a sham-injected time matched control (injected with phosphate buffered saline [PBS]). The time points were 6 and 24 hours post-injection. Immunostimulated fish were injected with a weight-based dose of poly (I:C)(2 µg per g of wet body mass).
Project description:This was a comparative transcriptome analysis by using high throughput sequencing. To assess the effects of heat stress on maize we used a controlled environment facility called the Enviratron to simulate field conditions. For our experiments, maize plants were subjected to conditions simulating normal diurnal rhythms of light and temperature, with increasing maximal daily temperature (MDT). Maize plants were grown continuously under four different temperature regimes with simulated morning temperatures ramped up over 6 hr to the MDT of 31°C, 33°C, 35°C or 37°C and simulated evening/night time temperatures ramped down over 8 hr to 10°C below the MDT. We tracked the gene expression events of maize W22 seedlings grow under different temperatures (MDT of 31°C, 33°C, 35°C or 37°C) to evaluate how different MDTs affect the program of gene expression in maize. At the same time, we analyzed the effects of temperature on gene expression in bzip60-2 and W22 V4 plants (20 DAG) and V5 plants (27 DAG) in the Enviratron as the temperature reached its MDT to investigate whether and how bZIP60 confers heat stress tolerance in maize. RNA was extracted from small strips of leaf lamina excised from the first fully expanded leaf of V4 and V5 W22 plants (at 20 and 27 DAG, respectively). Plants were sampled in triplicates.
Project description:In this study we use nimblegen high-density arrays to examine gene expression regulation in a common-garden experiment varying thermal environments. We report genome-wide patterns of gene expression in two heat tolerant southern and two heat-sensitive northern clones of Daphnia pulex exposed to either optimal (18°C) or substressful (28°C) temperatures.
Project description:Adult male fish were exposed to the various temperature acclimation conditions as outlined in the published manuscript and RNA was extracted from fish at each time point as listed in the experiment set description. Abstract: Eurythermal ectotherms commonly thrive in environments that expose them to large variations in temperature on daily and seasonal bases. The roles played by alterations in gene expression in enabling eurytherms to adjust to these two temporally distinct patterns of thermal stress are poorly understood. We used cDNA microarray analysis to examine changes in gene expression in a eurythermal fish, Austrofundulus limnaeus, subjected to long-term acclimation to constant temperatures of 20, 26 and 37 degrees C and to environmentally realistic daily fluctuations in temperature between 20 degrees C and 37 degrees C. Our data reveal major differences between the transcriptional responses in the liver made during acclimation to constant temperatures and in response to daily temperature fluctuations. Control of cell growth and proliferation appears to be an important part of the response to change in temperature, based on large-scale changes in mRNA transcript levels for several key regulators of these pathways. However, cell growth and proliferation appear to be regulated by different genes in constant versus fluctuating temperature regimes. The gene expression response of molecular chaperones is also different between constant and fluctuating temperatures. Small heat shock proteins appear to play an important role in response to fluctuating temperatures whereas larger molecular mass chaperones such as Hsp70 and Hsp90 respond more strongly to chronic high temperatures. A number of transcripts that encode for enzymes involved in the biosynthesis of nitrogen-containing organic osmolytes have gene expression patterns that indicate a possible role for these 'chemical chaperones' during acclimation to chronic high temperatures and daily temperature cycling. Genes important for the maintenance of membrane integrity are highly responsive to temperature change. Changes in fatty acid saturation may be important in long-term acclimation and in response to fluctuating temperatures; however cholesterol metabolism may be most critical for short-term acclimation to fluctuating temperatures. The variable effect of temperature on the expression of genes with daily rhythms of expression indicates that there is a complex interaction between the temperature cycle and daily rhythmicity in gene expression. A number of new hypotheses concerning temperature acclimation in fish have been generated as a result of this study. The most notable of these hypotheses is the possibility that the high mobility group b1 (HMGB1) protein, which plays key roles in the assembly of transcription initiation and enhanceosome complexes, may act as a compensatory modulator of transcription in response to temperature, and thus as a global gene expression temperature sensor. This study illustrates the utility of cDNA microarray approaches in both hypothesis-driven and 'discovery-based' investigations of environmental effects on organisms. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Keywords: all_pairs
Project description:Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta) populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if similar reaction norm patterns were present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C) representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We were able to identify 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction norms. The responses observed suggest that populations may vary in their susceptibility to climate change.
Project description:Common carp (~0.5kg) previously held for over 3 months at 25°C were randomly placed into two large aquarium tanks, one which remained throughout at 25°C (control) and the other that was cooled over 3 days to 11°C and held for 23 days. Replicate specimens from both tanks were then killed at up to 17 timepoints after cooling, kidney tissue was sampled, and transcript expression as a function of time after cooling determined by RNA-seq.
Project description:We are reporting here the effects of adaptation to different ambient temperatures in the whole genome gene expression of interscapular BAT