Transcriptomic analysis of primary human lung cells and tissue samples highlights cellular crosstalk during infections with influenza A virus
Ontology highlight
ABSTRACT: We used RNA sequencing to comprehensively map the expression of coding and non-coding RNAs in primary human alveolar epithelial type II cells (AECIIs), alveolar macrophages (AMs), human lung tissue, and the epithelial cell line A549 during infection with IAV strain H3N2 Panama
Project description:A novel avian-origin H7N9 influenza A virus (IAV) emerged in China in early 2013 causing mild to lethal human respiratory infections. H7N9 originated from multiple reassortment events between avian viruses and carries genetic markers of human adaptation. Determining whether H7N9 induces a host-response closer to human or avian IAV is important to better characterize this emerging virus. Here we compared the human lung epithelial cell response to infection with A/Anhui/01/13 (H7N9) or highly pathogenic avian-origin H5N1, H7N7, or human seasonal H3N2 IAV. Here, polarized confluent monolayers of Calu-3 cells were infected apically with the avian-origin IAVs A/Anhui/01/2013 (H7N9) [Anhui01], A/Netherland/219/2003 (H7N7) [NL219], A/Vietnam/1203/2004 (H5N1) [VN1203], or a human seasonal virus A/Panama/2007/1999 (H3N2) [Pan99] at an MOI of 1. Time-matched mocks were also included using the same cell stock as the rest of the samples. Culture medium (same as what the virus stock is in) was used for the mock infections. Quadruplicate wells were infected for each virus/timepoint. Measured timepoints were 3, 7, 12 and 24 hours post-inoculation and the RNA was used for transcriptional analysis via microarray.
Project description:Influenza A virus infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic influenza A virus (IAV) strains replicate efficiently in permissive human cells, many avian IAV cause abortive non-productive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or down-regulated in the course of permissive vs. non-permissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive vs. non-permissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as pro-viral host factor since its down-regulation inhibited efficient propagation of seasonal IAV while over-expression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and non-permissive imfluenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target.
Project description:Miao2010 - Innate and adaptive immune
responses to primary Influenza A Virus infection
This model is described in the article:
Quantifying the early immune
response and adaptive immune response kinetics in mice infected
with influenza A virus.
Miao H, Hollenbaugh JA, Zand MS,
Holden-Wiltse J, Mosmann TR, Perelson AS, Wu H, Topham DJ.
J. Virol. 2010 Jul; 84(13):
6687-6698
Abstract:
Seasonal and pandemic influenza A virus (IAV) continues to
be a public health threat. However, we lack a detailed and
quantitative understanding of the immune response kinetics to
IAV infection and which biological parameters most strongly
influence infection outcomes. To address these issues, we use
modeling approaches combined with experimental data to
quantitatively investigate the innate and adaptive immune
responses to primary IAV infection. Mathematical models were
developed to describe the dynamic interactions between target
(epithelial) cells, influenza virus, cytotoxic T lymphocytes
(CTLs), and virus-specific IgG and IgM. IAV and immune kinetic
parameters were estimated by fitting models to a large data set
obtained from primary H3N2 IAV infection of 340 mice. Prior to
a detectable virus-specific immune response (before day 5), the
estimated half-life of infected epithelial cells is
approximately 1.2 days, and the half-life of free infectious
IAV is approximately 4 h. During the adaptive immune response
(after day 5), the average half-life of infected epithelial
cells is approximately 0.5 days, and the average half-life of
free infectious virus is approximately 1.8 min. During the
adaptive phase, model fitting confirms that CD8(+) CTLs are
crucial for limiting infected cells, while virus-specific IgM
regulates free IAV levels. This may imply that CD4 T cells and
class-switched IgG antibodies are more relevant for generating
IAV-specific memory and preventing future infection via a more
rapid secondary immune response. Also, simulation studies were
performed to understand the relative contributions of
biological parameters to IAV clearance. This study provides a
basis to better understand and predict influenza virus
immunity.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000546.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:A novel avian-origin H7N9 influenza A virus (IAV) emerged in China in early 2013 causing mild to lethal human respiratory infections. H7N9 originated from multiple reassortment events between avian viruses and carries genetic markers of human adaptation. Determining whether H7N9 induces a host-response closer to human or avian IAV is important to better characterize this emerging virus. Here we compared the human lung epithelial cell response to infection with A/Anhui/01/13 (H7N9) or highly pathogenic avian-origin H5N1, H7N7, or human seasonal H3N2 IAV.
Project description:This project is based upon the fundamental observation that alveolar macrophage-derived extracellular vesicles (AM-EVs), when internalized by neighboring epithelial cells, inhibit their infection by influenza virus. This inhibitory activity of AM-EVs is abolished when AMs are treated with cigarette smoke extract (CSE). We chose to survey the AM-EV proteome in an effort to identify candidate proteins whose abundance within EVs was downregulated by CSE treatment of AMs, thus explaining the ability of CSE to abrogate the inhibitory activity against influenza.
Project description:Influenza A virus (IAV) causes severe respiratory infections and alveolar epithelial damage resulting in acute respiratory distress syndrome (ARDS). Extracellular vesicles (EV) have been shown to mediate cellular crosstalk in inflammation by transfer of microRNAs. In this study, we found significant changes in the miRNA composition of EVs in the broncho-alveolar lavage fluid (BALF) from patients with IAV-induced ARDS. Among the nine significantly deregulated microRNAs, miR-17-5p was upregulated in patients` BALF and in EVs of IAV-infected lung epithelial cells (A549). In these cells, transfer of miR-17-5p strongly downregulated expression of the antiviral factor Mx1 and significantly enhanced IAV replication.
Project description:Respiratory infections, like the current pandemic SARS-CoV-2 virus, target the epithelial cells in the respiratory tract. However, alveolar macrophages (AMs) are tissue-resident macrophages located within the alveoli of the lung and they play a key role in the early phases of an immune response to respiratory infections. We expect that AMs are the first immune cells to encounter the SARS-CoV-2 and therefore their reaction to SARS-CoV-2 infection will have a profound impact upon the outcome of the infection. Interferons (IFNs) are antiviral cytokines and the first cytokine produced upon viral infection. Here, we challenge AMs with SARS-CoV-2 and to our surprise find that the AMs are incapable of recognising SARS-CoV-2 and produce IFN. This is in contrast to respiratory pathogens, such as influenza A virus and Sendai virus. Callenge of AMs with those viruses resulted in a robust IFN response. The absence of IFN production by AMs upon challenge could explain the initial asymptotic phase of SARS-CoV-2 infections and argues against the AMs as the source of proinflamatory cytokines later in infection.
Project description:Transcriptional profiling of primary human alveolar macrophages (AMs) comparing control untreated AMs with AMs exposed with Serotype 14 Streptococcus pneumoniae (NCTC11902) strain (MOI 10) for 4 hours) Two-condition experiment, control AMs vs. infected AMs. Biological replicates: 3 control replicates, 3 infected replicates MOI 10.
Project description:Influenza A virus (IAV) infection causes acute respiratory disease with potential severe and deadly complications. Viral pathogenesis is not only due to the direct cytopathic effect of viral infections but also to the exacerbated host inflammatory responses. Influenza viral infection can activate various host signaling pathways that function to activate or inhibit viral replication. Our previous studies have shown that a receptor tyrosine kinase TrkA plays an important role in the replication of influenza viruses in vitro, but its biological roles and functional mechanisms in influenza viral infection have not been characterized. Here we show that IAV infection strongly activates TrkA in vitro and in vivo. Using a chemical-genetic approach to specifically control TrkA kinase activity through a small molecule compound 1NMPP1 in a TrkA knock-in (TrkA KI) mouse model, we show that 1NMPP1-mediated TrkA inhibition completely protected mice from a lethal IAV infection by significantly reducing viral loads and lung inflammation. Using primary lung cells isolated from the TrkA KI mice, we show that specific TrkA inhibition reduced viral RNA synthesis in airway epithelial cells (AECs) but not in alveolar macrophages (AMs). Transcriptomic analysis confirmed the cell-type-specific role of TrkA in viral RNA synthesis, and identified distinct gene expression patterns under the TrkA regulation in IAV-infected AECs and AMs. Among the TrkA-activated targets are various proinflammatory cytokines and chemokines such as IL6, IL-1, IFNs, CCL-5, and CXCL9, supporting the role of TrkA in mediating lung inflammation. Indeed, TrkA inhibitor 1NMPP1 administered after the peak of IAV replication, though had no effect on viral load, was able to decrease lung inflammation and provide partial protection in mice. Taken together, our results have demonstrated for the first time an important biological role of TrkA signaling in IAV infection, identified its cell-type-specific contribution to viral replication, and revealed its functional mechanism in virus-induced lung inflammation. This study suggests TrkA as a novel host target for therapeutics against influenza viral disease.
Project description:Viral infections affecting the upper or lower respiratory tract induce mucin production in the epithelial surfaces of the respiratory cells. However, a little is known about how mucins are produced on the surfaces of respiratory epithelial cells and affects viral replication. In the course of the investigation of the cellular responses in the early stage of Influenza A virus (IAV) infection, we found that two miRNAs, miR-221 and miR-17-3p, which target the mRNA of GalNAc transferase 3 (GALNT3), are rapidly down-regulated as early as 1.5 h post-infection. To understand the early host cell responses to the IAV infection, we performed miRNA microarray analysis using a human alveolar adenocarcinoma cell line, A549 cells, infected with influenza A/Puerto Rico/8/34 H1N1 (PR8) virus. We isolated the cellular RNAs at 0.5, 1.5 and 4.5 h post-infection and detected significant changes in the global profile of miRNA expression after infection with IAV. mouse embryonic fibroblasts. Each sample was run in duplicate.