Project description:Pelvic organ prolapse (POP) affects a large proportion of adult women. With the increase in global population ageing, the prevalence of POP is expected to increase in upcoming decades, which will impose a substantial medical burden. Therefore, suitable therapeutical target is important. However, due to the pathogenesis of POP is still unclear, it leads to the failure of POP repair. Herein, we identified changes in ncRNA, and mRNAs in the anterior vaginal wall and uterosacral ligament in patients with POP, providing new insights into the pathogenesis of POP and new targets for treatment.
Project description:Introduction and Hypothesis: Identify processes contributing to pelvic organ prolapse (POP) by transcriptional profiling of pelvic connective tissue in conjunction with light microscopy. Methods: We performed a frequency matched case-control study of women undergoing hysterectomy. Total RNA, extracted from uterosacral and round ligament samples used to generate labeled cRNA, was hybridized to microarrays and analyzed for the expression of 32,878 genes. Significance Analysis of Microarrays, (Stanford University, CA), identified differentially expressed genes used for ontoanalysis, and quantitative PCR (qPCR) confirmed results. Light microscopy confirmed tissue type and assessed inflammatory infiltration. Results: The analysis of thirty-four arrays revealed 249 differentially expressed genes with fold changes larger than 1.5 fold and false discovery rates M-bM-^IM-$5.2%. Immunity and Defense was the most significant biological process differentially expressed in POP. Selected qPCR confirmed 4 genes. Light microscopy showed no inflammatory infiltrates. Conclusions: Genes enriched for Immunity and Defense contribute to POP independent of inflammatory infiltrates. Keywords: whole tissue (endopelvic fascia) type comparison This was a group matched case control study of 8 women with pelvic organ prolapse versus 9 non-prolapse controls, both undergoing hysterectomy for benign conditions. Two separate pelvic support tissues were collected from each patient. The uterosacral ligament and round ligament tissue was removed at the time of hysterectomy, RNA was extracted and ABI whole genome chips used to identify differences in expression profiles of individual samples. Various ethnic groups, age groups and menopausal status were included.
Project description:Introduction and Hypothesis: Identify processes contributing to pelvic organ prolapse (POP) by transcriptional profiling of pelvic connective tissue in conjunction with light microscopy. Methods: We performed a frequency matched case-control study of women undergoing hysterectomy. Total RNA, extracted from uterosacral and round ligament samples used to generate labeled cRNA, was hybridized to microarrays and analyzed for the expression of 32,878 genes. Significance Analysis of Microarrays, (Stanford University, CA), identified differentially expressed genes used for ontoanalysis, and quantitative PCR (qPCR) confirmed results. Light microscopy confirmed tissue type and assessed inflammatory infiltration. Results: The analysis of thirty-four arrays revealed 249 differentially expressed genes with fold changes larger than 1.5 fold and false discovery rates ≤5.2%. Immunity and Defense was the most significant biological process differentially expressed in POP. Selected qPCR confirmed 4 genes. Light microscopy showed no inflammatory infiltrates. Conclusions: Genes enriched for Immunity and Defense contribute to POP independent of inflammatory infiltrates. Keywords: whole tissue (endopelvic fascia) type comparison