Project description:Whole genome sequencing was performed on several murine iPS cell clones (and their parental cells) from each of three independent reprogramming experiments. Hundreds of single nucleotide variants (SNVs) were detected in each clone, with an average of 11 in coding regions. Affymetrix Mouse Exon 1.0ST arrays were used to compare expression patterns in MPSVII iPS lines, and embryo-derived MPSVII ES cells. Unsupervised hierarchal clustering analysis showed that the iPS clones and ES cell lines clustered randomly, suggesting that their global patterns of gene expression are highly similar. Taken together, our data suggest that most of the genetic variation in iPS cell clones is not caused by reprogramming, but is rather a consequence of cloning individual cells, “capturing” random mutations that preexisted in the single cells that were reprogrammed. These mutations can sometimes contribute to reprogramming “fitness”, thus providing a selective advantage for rare cells when they overexpress reprogramming factors.
Project description:Whole genome sequencing was performed on several murine iPS cell clones (and their parental cells) from each of three independent reprogramming experiments. Hundreds of single nucleotide variants (SNVs) were detected in each clone, with an average of 11 in coding regions. Affymetrix Mouse Exon 1.0ST arrays were used to compare expression patterns in MPSVII iPS lines, and embryo-derived MPSVII ES cells. Unsupervised hierarchal clustering analysis showed that the iPS clones and ES cell lines clustered randomly, suggesting that their global patterns of gene expression are highly similar. Taken together, our data suggest that most of the genetic variation in iPS cell clones is not caused by reprogramming, but is rather a consequence of cloning individual cells, “capturing” random mutations that preexisted in the single cells that were reprogrammed. These mutations can sometimes contribute to reprogramming “fitness”, thus providing a selective advantage for rare cells when they overexpress reprogramming factors. Mouse embryonic fibroblasts (MEFs) derived from a murine disease model (Mucopolysaccaridosis type VII- MPSVII) were used. Affymetrix Mouse Exon 1.0ST arrays were used to compare expression patterns in MPSVII iPS lines, and embryo-derived MPSVII ES cells. Expression patterns in four separate iPS clones were compared to MPSVII ES cells. Control hybridization was performed with B6 Blu ES cells and MEFs.
Project description:With more than 70 different histological sarcoma subtypes, accurate classification can be challenging. Although characteristic genetic events can largely facilitate pathological assessment, large-scale molecular profiling generally is not part of regular diagnostic workflows for sarcoma patients. We hypothesized that whole genome sequencing (WGS) optimizes clinical care of sarcoma patients by detection of diagnostic and actionable genomic characteristics, and of underlying hereditary conditions. WGS of tumor and germline DNA was incorporated in the diagnostic work-up of 83 patients with a (presumed) sarcomas in a tertiary referral center. Clinical follow-up data were collected prospectively to assess impact of WGS on clinical decision making. In 12/83 patients (14%), the genomic profile led to revision of cancer diagnosis, with change of treatment plan in eight. All twelve patients had undergone multiple tissue retrieval procedures and immunohistopathological assessments by regional and expert pathologists prior to WGS analysis. Actionable biomarkers with therapeutic potential were identified for 30/83 patients. Pathogenic germline variants were present in seven patients. In conclusion, unbiased genomic characterization with WGS identifies genomic biomarkers with direct clinical implications for sarcoma patients. Given the diagnostic complexity and high unmet need for new treatment opportunities in sarcoma patients, WGS can be an important extension of the diagnostic arsenal of pathologists.
Project description:YAMC murine colonic epithelial cells were repeatitively treated with commensal bacteria-polarized macrophages or 4-HNE. Following 10 treatments, 25 clones were selected to engraft immunodeficient mice, and 10 out of 25 clones grew tumors in these mice. To explore gene expression associated with cellular transformation, whole-genome profiling was performed on 10 transformed clones and compared with untreated YAMC controls using Illumina Mouse WG-6 v2.0 Expression BeadChip.
Project description:'Nebbiolo' (Vitis vinifera) is among the most ancient and prestigious wine grape varieties characterised by a wide genetic variability exhibited by a high number of clones (vegetatively propagated lines of selected mother plants). However, limited information is available for this cultivar at the molecular and genomic levels. The whole-genomes of three 'Nebbiolo' clones (CVT 71, CVT 185 and CVT 423) were re-sequenced and a de novo transcriptome assembly was produced. Important remarks about the genetic peculiarities of 'Nebbiolo' and its intra-varietal variability useful for clonal identification were reported. In particular, several varietal transcripts identified for the first time in 'Nebbiolo' were disease resistance genes and single-nucleotide variants (SNVs) identified in 'Nebbiolo', but not in other cultivars, were associated with genes involved in the stress response. Ten newly discovered SNVs were successfully employed to identify some periclinal chimeras and to classify 98 'Nebbiolo' clones in seven main genotypes, which resulted to be linked to the geographical origin of accessions. In addition, for the first time it was possible to discriminate some 'Nebbiolo' clones from the others.
Project description:We report that metastasis in an autochthonous mouse model of sarcoma is driven by a single clone in the primary tumor. We performed RNA-seq comparing the gene expression profiles of the metastatic clones (MC) to matched non-metastatic clones (non-MC) from the same tumor for multiple tumors. RNA from lung metastases (Lung-Met) of matched tumors are sequenced as well.