Project description:CWG-cPIP targets CAG/CTG (CWG) triplet repeat DNA to inhibit the transcription in a repeat length-dependent manner. To investigate effects of CWG-cPIP on transcriptome defects in the brain of CUG300 mice, which we developed as a model of DM1, CWG-cPIP (83 ug/kg) was injected into mouse hippocampus. RNA sequencing analysis was performed using mouse hippocampus 10 days later.
Project description:MutL? endonuclease can be activated on covalently continuous DNA that contains a MutS?- or MutS?-recognizable lesion and a helix perturbation that supports proliferating cell nuclear antigen (PCNA) loading by replication factor C, providing a potential mechanism for triggering mismatch repair on nonreplicating DNA. Because mouse models for somatic expansion of disease-associated (CAG)n/(CTG)n triplet repeat sequences have implicated both MutS? and MutL? and have suggested that expansions can occur in the absence of replication, we have asked whether an extrahelical (CAG)n or (CTG)n element is sufficient to trigger MutL? activation. (CAG)n and (CTG)n extrusions in relaxed closed circular DNA do in fact support MutS?-, replication factor C-, and PCNA-dependent activation of MutL? endonuclease, which can incise either DNA strand. Extrahelical elements of two or three repeat units are the preferred substrates for MutL? activation, and extrusions of this size also serve as moderately effective sites for loading the PCNA clamp. Relaxed heteroduplex DNA containing a two or three-repeat unit extrusion also triggers MutS?- and MutL?-endonuclease-dependent mismatch repair in nuclear extracts of human cells. This reaction occurs without obvious strand bias at about 10% the rate of that observed with otherwise identical nicked heteroduplex DNA. These findings provide a mechanism for initiation of triplet repeat processing in nonreplicating DNA that is consistent with several features of the model of Gomes-Pereira et al. [Gomes-Pereira M, Fortune MT, Ingram L, McAbney JP, Monckton DG (2004) Hum Mol Genet 13(16):1815-1825]. They may also have implications for triplet repeat processing at a replication fork.
Project description:Somatic mosaicism of repeat length is prominent in repeat expansion disorders such as Huntington disease and myotonic dystrophy. Somatic mosaicism is age-dependent, tissue-specific and expansion-biased, and likely contributes toward the tissue-specificity and progressive nature of the symptoms. We propose that therapies targeted at somatic repeat expansion may have general utility in these disorders. Specifically, suppression of somatic expansion would be expected to be therapeutic, whilst reversion of the expanded mutant repeat to within the normal range would be predicted to be curative. However, the effects of genotoxic agents on the mutational properties of specific nuclear genes are notoriously difficult to define. Nonetheless, we have determined that chronic exposure over a three month period to a number of genotoxic agents can alter the rate of triplet repeat expansion in whole populations of mammalian cells. Interestingly, high doses of caffeine increased the rate of expansion by approximately 60%. More importantly, cytosine arabinoside, ethidium bromide, 5-azacytidine and aspirin all significantly reduced the rate of expansion by from 35 to 75%. These data establish that drug induced suppression of somatic expansion is possible. These data also suggest that highly unstable expanded simple sequence repeats may act as sensitive reporters of genotoxic assault in the soma.
Project description:CWG-cPIP targets CAG/CTG (CWG) triplet repeat DNA to inhibit the transcription in a repeat length-dependent manner. To investigate effects of CWG-cPIP on alternative splicing defects in the brain of CUG300 mice, which we developed as a model of DM1, CWG-cPIP (83 ug/kg) was injected into mouse hippocampus. RNA sequencing analysis was performed using mouse hippocampus 10 days later.
Project description:Dynamic expansions of toxic polyglutamine (polyQ)-encoding CAG repeats in ubiquitously expressed, but otherwise unrelated, genes cause a number of late-onset progressive neurodegenerative disorders, including Huntington disease and the spinocerebellar ataxias. As polyQ toxicity in these disorders increases with repeat length, the intergenerational expansion of unstable CAG repeats leads to anticipation, an earlier age-at-onset in successive generations. Crucially, disease associated alleles are also somatically unstable and continue to expand throughout the lifetime of the individual. Interestingly, the inherited polyQ length mediating a specific age-at-onset of symptoms varies markedly between disorders. It is widely assumed that these inter-locus differences in polyQ toxicity are mediated by protein context effects. Previously, we demonstrated that the tendency of expanded CAG•CTG repeats to undergo further intergenerational expansion (their 'expandability') also differs between disorders and these effects are strongly correlated with the GC content of the genomic flanking DNA. Here we show that the inter-locus toxicity of the expanded polyQ tracts of these disorders also correlates with both the expandability of the underlying CAG repeat and the GC content of the genomic DNA flanking sequences. Inter-locus polyQ toxicity does not correlate with properties of the mRNA or protein sequences, with polyQ location within the gene or protein, or steady state transcript levels in the brain. These data suggest that the observed inter-locus differences in polyQ toxicity are not mediated solely by protein context effects, but that genomic context is also important, an effect that may be mediated by modifying the rate at which somatic expansion of the DNA delivers proteins to their cytotoxic state.
Project description:We report here a simple method for generating large CAG/CTG repeat sequences. We have applied this method to clone the genomic sequence containing the CAG/CTG repeat and its upstream intronic sequence present in spinocerebellar ataxia type 3 or Machado-Joseph disease (SCA3/MJD) by a modified DIRECT method. With these modifications we have considerably simplified the generation of the repeat probe used to screen for anomalous bands. This method will facilitate the molecular approach to other genetic disorders where expansions of repeat sequences could be involved.
Project description:Nucleic acid three-way junctions (3WJs) play key roles in biological processes such as nucleic acid replication in addition to being implicated as dynamic transient intermediates in trinucleotide repeat sequences. Structural modulation of specific nucleic acid junctions could allow for control of biological processes and disease states at the nucleic acid level. Trinucleotide repeat expansions are associated with several neurodegenerative diseases where dynamic slippage is thought to occur during replication, forming transient 3WJ intermediates with the complementary strand. Here, we report triptycene-based molecules that bind to a d(CAG)·(CTG) repeat using a gel shift assay, fluorescence-quenching and circular dichroism.
Project description:At fifteen different genomic locations, the expansion of a CAG/CTG repeat causes a neurodegenerative or neuromuscular disease, the most common being Huntington's disease and myotonic dystrophy type 1. These disorders are characterized by germline and somatic instability of the causative CAG/CTG repeat mutations. Repeat lengthening, or expansion, in the germline leads to an earlier age of onset or more severe symptoms in the next generation. In somatic cells, repeat expansion is thought to precipitate the rate of disease. The mechanisms underlying repeat instability are not well understood. Here we review the mammalian model systems that have been used to study CAG/CTG repeat instability, and the modifiers identified in these systems. Mouse models have demonstrated prominent roles for proteins in the mismatch repair pathway as critical drivers of CAG/CTG instability, which is also suggested by recent genome-wide association studies in humans. We draw attention to a network of connections between modifiers identified across several systems that might indicate pathway crosstalk in the context of repeat instability, and which could provide hypotheses for further validation or discovery. Overall, the data indicate that repeat dynamics might be modulated by altering the levels of DNA metabolic proteins, their regulation, their interaction with chromatin, or by direct perturbation of the repeat tract. Applying novel methodologies and technologies to this exciting area of research will be needed to gain deeper mechanistic insight that can be harnessed for therapies aimed at preventing repeat expansion or promoting repeat contraction.
Project description:Expanded CAG/CTG repeats underlie thirteen neurological disorders, including myotonic dystrophy type 1 (DM1) and Huntington’s disease (HD). Upon expansion, CAG/CTG repeat loci acquire heterochromatic characteristics. This observation raises the hypothesis that repeat expansion provokes changes to higher-order chromatin conformation and thereby affects both gene expression in cis and the genetic instability of the repeat tract. Here we tested this hypothesis directly by performing 4C sequencing at the DMPK and HTT loci from DM1 and HD patient-derived cells. Surprisingly, chromatin contacts remain unchanged upon repeat expansion at both loci. This was true for expanded alleles with different DNA methylation levels and CTCF binding. Repeat tract sizes ranging from 15 to 1,700 repeats displayed strikingly similar chromatin interaction profiles. Moreover, the ectopic insertion of an expanded CAG repeat tract did not change the three-dimensional chromatin conformation of the surrounding genomic region. Our findings argue that extensive changes in heterochromatic properties are not enough to alter chromatin conformation at expanded CAG/CTG repeat loci. We conclude that 3D chromatin conformation is unlikely to drive repeat expansions or changes in gene expression in expanded CAG/CTG repeat disorders. This SuperSeries is composed of the SubSeries listed below.
Project description:Expanded CAG/CTG repeats underlie 13 neurological disorders, including myotonic dystrophy type 1 (DM1) and Huntington's disease (HD). Upon expansion, disease loci acquire heterochromatic characteristics, which may provoke changes to chromatin conformation and thereby affect both gene expression and repeat instability. Here, we tested this hypothesis by performing 4C sequencing at the DMPK and HTT loci from DM1 and HD-derived cells. We find that allele sizes ranging from 15 to 1700 repeats displayed similar chromatin interaction profiles. This was true for both loci and for alleles with different DNA methylation levels and CTCF binding. Moreover, the ectopic insertion of an expanded CAG repeat tract did not change the conformation of the surrounding chromatin. We conclude that CAG/CTG repeat expansions are not enough to alter chromatin conformation in cis. Therefore, it is unlikely that changes in chromatin interactions drive repeat instability or changes in gene expression in these disorders.