Runx1 is a central regulator of osteogenesis for bone homeostasis by orchestrating BMP and WNT signaling pathways
Ontology highlight
ABSTRACT: Runx1 is highly expressed in osteoblasts, however, its function in osteogenesis is unclear. We generated mesenchymal progenitor-specific (Runx1f/fTwist2-Cre) and osteoblast-specific (Runx1f/fCol1α1-Cre) conditional knockout (Runx1 CKO) mice. The mutant CKO mice with normal skeletal development displayed a severe osteoporosis phenotype at postnatal and adult stages. Runx1 CKO resulted in decreased osteogenesis and increased adipogenesis. RNA-sequencing analysis, Western blot, and qPCR validation of Runx1 CKO samples showed that Runx1 regulates BMP signaling pathway and Wnt/β-catenin signaling pathway. ChIP assay revealed direct binding of Runx1 to the promoter regions of Bmp7, Alk3, and Atf4, and promoter mapping demonstrated that Runx1 upregulates their promoter activity through the binding regions. Bmp7 overexpression rescued Alk3, Runx2, and Atf4 expression in Runx1-deficient BMSCs. Runx2 expression was decreased while Runx1 was not changed in Alk3 deficient osteoblasts. Atf4 overexpression in Runx1-deficient BMSCs did not rescue expression of Runx1, Bmp7, and Alk3. Smad1/5/8 activity was vitally reduced in Runx1 CKO cells, indicating Runx1 positively regulates the Bmp7/Alk3/Smad1/5/8/Runx2/ATF4 signaling pathway. Notably, Runx1 overexpression in Runx2-/- osteoblasts rescued expression of Atf4, OCN, and ALP to compensate Runx2 function. Runx1 CKO mice at various osteoblast differentiation stages reduced Wnt signaling and caused high expression of C/ebpα and Pparγ and largely increased adipogenesis. Co-culture of Runx1-deficient and wild-type cells demonstrated that Runx1 regulates osteoblast−adipocyte lineage commitment both cell-autonomously and non-autonomously. Notably, Runx1 overexpression rescued bone loss in OVX-induced osteoporosis. This study focused on the role of Runx1 in different cell populations with regards to BMP and Wnt signaling pathways and in the interacting network underlying bone homeostasis as well as adipogenesis, and has provided new insight and advancement of knowledge in skeletal development. Collectively, Runx1 maintains adult bone homeostasis from bone loss though up-regulating Bmp7/Alk3/Smad1/5/8/Runx2/ATF4 and WNT/β-Catenin signaling pathways, and targeting Runx1 potentially leads to novel therapeutics for osteoporosis. Using unbiased genome-wide RNA-seq data from Runx1f/fCol1α1-Cre, Runx1ffTwist2-cre, Runx1f/f;Col2α1-Cre and their control osteoblasts, we examined Runx1-mediated transcriptional targets that could account for osteoblast differentiation defects and increased adipocytes.
Project description:Protein disulfide isomerase (PDI) is an oxidoreductase responsible for the formation, reduction and isomerization of disulfide bonds of nascent proteins in endoplasmic reticulum (ER). So far, the role of PDI in bone biology has never been characterized using genetically-modified animal models. In this study we generated osteoblast- specific PDI-deficient mice by crossing PDI-floxed (PDIfl/fl) mice with Osx-Cre mice. Compared with their littermate control PDIfl/fl mice, homozygous osteoblast-knockout mice (Osx-Cre/PDIfl/fl) were embryonically lethal, but heterozygous knockout mice (Osx-Cre/PDIfl/wt) displayed significantly pronounced growth retardation and reduced bone length. Besides, the decreases in bone density, osteoblast and osteoclast numbers, collagen fiber content and bone formation rate were observed in Osx-Cre/PDIfl/wt mice. Osteoblast precursors isolated from PDIfl/fl mice were infected with Cre recombinant adenovirus to produce PDI-deficient osteoblasts, followed by induction of differentiation. Osteoblasts deficient of PDI had decreased alkaline phosphatase activity, mineralizing capacity, and differentiation. Quantitative protein mass spectrometry analysis and immunoblotting showed that PDI deficiency markedly decreased the expression of the α-subunits of collagen prolyl 4-hydroxylase (C-P4H), including P4HA1, P4HA2 and P4HA3. These results demonstrate that PDI plays an essential role in osteoblast differentiation and bone formation and is required for the expression of the α-subunit of C-P4H in osteoblasts.
Project description:We identified four transcriptional factors, Runx2, Osx, Dlx5, and ATF4, that rapidly and efficiently reprogram mouse fibroblasts derived from 2.3 kb type I collagen promoter-driven green fluorescent protein (Col2.3GFP) transgenic mice into induced osteoblast cells (iOBs). The global transcriptome profiling validated that iOBs resemble primary osteoblasts. Genome-wide DNA methylation analysis demonstrates that within differentially methylated loci, the methylation status of iOBs more closely resembles primary osteoblasts than mouse fibroblasts. We further demonstrate that Col2.3GFP+ iOBs have transcriptome profiles similar to GFP+ cells derived from Col2.3GFP transgenic mouse bone chips.
Project description:Bone morphogenetic proteins (BMPs) are transforming growth factor β (TGFβ) family members that regulate the post-implantation and mid-gestation stages of pregnancy. In this study we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. To understand the role of ALK3 in the luminal uterine epithelium, we obtained the gene expression profiles of isolated luminal uterine epithelium from 3.5dpc control and Alk3 cKO mice. Gene expression profiling of isolated luminal uterine epithelium from control and Alk3 cKO mice. two group comparison
Project description:RUNX1 is crucial for multiple stages of hematopoiesis and its mutation can cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). We aim to study the role of RUNX1 in megakaryocyte-biased HSCs differentiation to megakaryocytes. Here, by using Runx1F/FMx1-Cre mouse model ,we sorted CD41pos HSCs and CD41neg HSCs in both RUNX1 WT and KO, and tested the RUNX1 direct binding targets in these cells genome.
Project description:RUNX1 is crucial for multiple stages of hematopoiesis and its mutation can cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). We aim to study the role of RUNX1 in megakaryocyte-biased HSCs differentiation to megakaryocytes. Here, by using Runx1F/FMx1-Cre mouse model, we sorted CD41pos HSCs and CD41neg HSCs in both RUNX1 WT and KO, and compared their gene expression profiles.
Project description:Inversion of chromosome 16 is a consistent finding in patients with acute myeloid leukemia subtype M4 with eosinophilia (AML M4Eo), which generates a CBFB-MYH11 fusion gene. It is generally considered that CBFβ-SMMHC, the fusion protein encoded by CBFB-MYH11, is a dominant negative repressor of RUNX1. However, recent findings challenge the RUNX1-repression model for CBFβ-SMMHC mediated leukemogenesis. To definitively address the role of Runx1 in CBFB-MYH11 induced leukemia, we crossed conditional Runx1 knockout mice (Runx1f/f) with conditional Cbfb-MYH11 knockin mice (Cbfb+/56M). Upon Mx1-Cre activation in hematopoietic cells induced by poly (I:C) injection, all Mx1-CreCbfb+/56M mice developed leukemia in 5 months while no leukemia developed in Runx1f/fMx1-CreCbfb+/56M mice, and this effect was cell autonomous. Importantly, the abnormal myeloid progenitors (AMPs), a leukemia initiating cell population induced by Cbfb-MYH11 in the bone marrow, decreased and disappeared in Runx1f/fMx1-CreCbfb+/56M mice. RNA-seq analysis of AMP cells showed that genes associated with proliferation, differentiation blockage and leukemia initiation, were differentially expressed between Mx1-CreCbfb+/56M and Runx1f/fMx1-CreCbfb+/56M mice. In addition, with chromatin immunocleavage sequencing (ChIC-seq) assay, we observed a significant enrichment of RUNX1/CBFβ-SMMHC target genes in Runx1f/fMx1-CreCbfb+/56M cells, especially among down-regulated genes, suggesting that RUNX1 and CBFβ-SMMHC mainly function together as activators of gene expression through direct target gene binding. These data indicate that Runx1 is indispensable for Cbfb-MYH11 induced leukemogenesis by working together with CBFβ-SMMHC to regulate critical genes associated with the generation of a functional AMP population.
Project description:RNA-seq was performed to compare expression pattern of musles taken form two mice strains- mdx and mdx/Runx1f/f, which are double KO carrting a muscle specific ablation of Runx1 using a Myf5-Cre. This comparison revealed the Runx1- responsive gene set in mdx muscles. we could cross this data with prior retrived datd from privous experiments found in this GEO quary, to pinpiont Runx1 target genes in muscle rgeneration
Project description:Osteoblasts require substantial amounts of energy to synthesize bone matrix and coordinate the mineralization of the skeleton. This study analyzed the effect of mitochondrial dysfunction on bone formation in mouse limbs. The limb mesenchyme-specific Tfam knockout (Tfamf/f;Prx1-Cre: Tfam-cKO) mice were analyzed morphologically, and histologically and gene expression in the limb bones were assessed by in situ hybridization, quantitative real-time PCR and RNA sequencing. Moreover, we analyzed mitochondrial function of osteoblasts in Tfam-cKO mice by mitochondrial membrane potential assay and transmission electron microscopic (TEM) observations. We investigated the pathogenesis of spontaneous bone fractures by immunohistochemical analysis, TEM observations and biomechanical examination. The forelimbs in Tfam-cKO mice were significantly shortened from birth and occurred spontaneous fractures within the first week after birth, resulting in severe limb deformities. Histologically, bone hypoplasia with decrease of matrix mineralization was apparent, and the expressions of type Ⅰ collagen and osteocalcin were decreased in the osteoblasts of Tfam-cKO mice although Runx2 expression was unchanged. Decreased type Ⅰ collagen deposition and mineralization in the matrix of the limb bones in Tfam-cKO mice was associated with marked mitochondrial dysfunction. Biomechanical analysis showed significantly lower Young’s modulus and hardness due to poor apatite orientation in the bone tissue of Tfam-cKO mice. The mice with limb mesenchyme-specific Tfam deletion exhibited spontaneous limb bone fractures, resulting in severe limb deformities. Their bone fragility was caused by poor apatite orientation due to impaired osteoblasts differentiation and maturation.
Project description:Purpose: We have used microarrays to identify gene expression profiles that distinguish mouse OS cells from normal pre-osteoblast cells and mature osteoblast cells. Methods: Transcriptional profiles of three cell lines derived from tumors from Osx-Cre p53fl/fl Rbfl/fl (fibroblastic OS) mouse model, and from pre-osteoblast cells (Kusa4b10 mouse bone marrow stromal cell line) and osteoblast cells (derived by in vitro differentiation of the Kusab410 mouse bone marrow stromal cell line) were generated by microarray analysis, each in triplicate, using Affymetrix mouse Gene1.0ST arrays. Transcriptional profiles were analyzed in cell lines derived from tumors from a genetically engineered mouse model of human osteosarcoma (Osx-Cre p53fl/fl Rbfl/fl) and osteoblast cells derived from the Kusa4b10 mouse bone marrow stromal cell line, in the undifferentiated state (pre-osteoblasts) and differentiated state (osteoblasts).
Project description:Osteogenesis is a highly regulated developmental process and continues during the turnover and repair of mature bone. Runx2, the master regulator of osteoblastogenesis, directs a transcription program essential for bone formation through both genetic and epigenetic mechanisms. While individual Runx2 gene targets have been identified, further insights into the broad spectrum of Runx2 functions required for osteogenesis are needed. By performing genome-wide characterization of Runx2 binding at the three major stages of osteoblast differentiation: proliferation, matrix deposition and mineralization, we identified Runx2-dependent regulatory networks driving bone formation. Using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) over the course of these stages, we discovered close to 80,000 significantly enriched regions of Runx2 binding throughout the mouse genome. These binding events exhibited distinct patterns during osteogenesis, and were associated with proximal promoters as well as a large percentage of Runx2 occupancy in non-promoter regions: upstream, introns, exons, transcription termination site (TTS) regions, and intergenic regions. These peaks were partitioned into clusters that are associated with genes in complex biological processes that support bone formation. Using Affymetrix expression profiling of differentiating osteoblasts depleted of Runx2, we identified novel Runx2 targets including Ezh2, a critical epigenetic regulator; Crabp2, a retinoic acid signaling component; Adamts4 and Tnfrsf19, two remodelers of extracellular matrix. We demonstrated by luciferase assays that these novel biological targets are regulated by Runx2 occupancy at non-promoter regions. Our data establish that Runx2 interactions with chromatin across the genome reveal novel genes, pathways and transcriptional mechanisms that contribute to the regulation of osteoblastogenesis. MC3T3-E1 cells were treated with scramble or Runx2 shRNA, then harvested at proliferating stage (day 0) and differentiating stage (day 9). Total RNAs recovered from these cells were hybridization on Affymetrix microarrays. We sought to find new target genes or pathways regulated by Runx2 during osteoblast differentiation. When combined with genome-wide occupancy of Runx2, we expect to gain new insights on how Runx2 controls a transcriptional program essential for osteoblast differentiation.