Project description:B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with mixed-lineage leukemia gene rearrangement (MLL-r) is a poor-prognosis subtype for which additional therapeutic targets are urgently needed. Currently no multi-omics data set for primary MLL r patient cells exists that integrates transcriptomics, proteomics and glycomics to gain an inclusive picture of theranostic targets. Methods: We have integrated transcriptomics, proteomics and glycomics to i) obtain the first inclusive picture of primary patient BCP-ALL cells and identify molecular signatures that distinguish leukemic from normal precursor B-cells and ii) better understand the benefits and limitations of the applied technologies to deliver deep molecular sequence data across major cellular biopolymers. Results: MLL-r cells feature an extensive remodeling of their glycocalyx, with increased levels of Core 2-type O-glycans and complex N-glycans as well as significant changes in sialylation and fucosylation. Notably, glycosaminoglycan remodeling from chondroitin sulfate to heparan sulfate was observed. A survival screen, to determine if glycan remodeling enzymes are redundant, identified MGAT1 and NGLY1, essential components of the N-glycosylation/degradation pathway, as highly relevant within this in vitro screening. OGT and OGA, unique enzymes that regulate intracellular O-GlcNAcylation, were also indispensable. Transcriptomics and proteomics further identified Fes and GALNT7-mediated glycosylation as possible therapeutic targets. While there is overall good correlation between transcriptomics and proteomics data, we demonstrate that a systematic combined multi-omics approach delivers important diagnostic information that is missed when applying a single omics technology. Conclusions: Apart from confirming well-known MLL-r BCP-ALL glycoprotein markers, our integrated multi-omics workflow discovered previously unidentified diagnostic/therapeutic protein targets.
Project description:The eleven-nineteen leukemia (ENL) protein family, composed of ENL and AF9, is a common component of 3 transcriptional modulators: AF4-ENL-P-TEFb complex (AEP), DOT1L-AF10-ENL complex (referred to as the DOT1L complex) and polycomb-repressive complex 1 (PRC1). Each complex associates with chromatin via distinct mechanisms, conferring different transcriptional properties including activation, maintenance, and repression. The mixed-lineage leukemia (MLL) gene often fuses with ENL and AF10 family genes in leukemia. However, the functional interrelationship among those 3 complexes in leukemic transformation remains largely elusive. Here, we have shown that MLL-ENL and MLL-AF10 constitutively activate transcription by aberrantly inducing both AEP-dependent transcriptional activation and DOT1L-dependent transcriptional maintenance, mostly in the absence of PRC1, to fully transform hematopoietic progenitors. These results reveal a cooperative transcriptional activation mechanism of AEP and DOT1L and suggest a molecular rationale for the simultaneous inhibition of the MLL fusion-AF4 complex and DOT1L for more effective treatment of MLL-rearranged leukemia.
Project description:Chromosomal rearrangements of the mixed lineage leukemia (MLL) gene occur in ∼10% of B-cell acute lymphoblastic leukemia (B-ALL) and define a group of patients with dismal outcomes. Immunohistochemical staining of bone marrow biopsies from most of these patients revealed aberrant expression of BCL6, a transcription factor that promotes oncogenic B-cell transformation and drug resistance in B-ALL. Our genetic and ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) analyses showed that MLL-AF4 and MLL-ENL fusions directly bound to the BCL6 promoter and up-regulated BCL6 expression. While oncogenic MLL fusions strongly induced aberrant BCL6 expression in B-ALL cells, germline MLL was required to up-regulate Bcl6 in response to physiological stimuli during normal B-cell development. Inducible expression of Bcl6 increased MLL mRNA levels, which was reversed by genetic deletion and pharmacological inhibition of Bcl6, suggesting a positive feedback loop between MLL and BCL6. Highlighting the central role of BCL6 in MLL-rearranged B-ALL, conditional deletion and pharmacological inhibition of BCL6 compromised leukemogenesis in transplant recipient mice and restored sensitivity to vincristine chemotherapy in MLL-rearranged B-ALL patient samples. Oncogenic MLL fusions strongly induced transcriptional activation of the proapoptotic BH3-only molecule BIM, while BCL6 was required to curb MLL-induced expression of BIM. Notably, peptide (RI-BPI) and small molecule (FX1) BCL6 inhibitors derepressed BIM and synergized with the BH3-mimetic ABT-199 in eradicating MLL-rearranged B-ALL cells. These findings uncover MLL-dependent transcriptional activation of BCL6 as a previously unrecognized requirement of malignant transformation by oncogenic MLL fusions and identified BCL6 as a novel target for the treatment of MLL-rearranged B-ALL.
Project description:Translocation of the mixed-lineage leukemia (MLL) gene with AF4, AF9, or ENL results in acute leukemia with both lymphoid and myeloid involvement. We characterized leukemia-initiating cells (LICs) in primary infant MLL-rearranged leukemia using a xenotransplantation model. In MLL-AF4 patients, CD34(+)CD38(+)CD19(+) and CD34(-)CD19(+) cells initiated leukemia, and in MLL-AF9 patients, CD34(-)CD19(+) cells were LICs. In MLL-ENL patients, either CD34(+) or CD34(-) cells were LICs, depending on the pattern of CD34 expression. In contrast, in patients with these MLL translocations, CD34(+)CD38(-)CD19(-)CD33(-) cells were enriched for normal hematopoietic stem cells (HSCs) with in vivo long-term multilineage hematopoietic repopulation capacity. Although LICs developed leukemic cells with clonal immunoglobulin heavy-chain (IGH) rearrangement in vivo, CD34(+)CD38(-)CD19(-)CD33(-) cells repopulated recipient bone marrow and spleen with B cells, showing broad polyclonal IGH rearrangement and recipient thymus with CD4(+) single positive (SP), CD8(+) SP, and CD4(+)CD8(+) double-positive (DP) T cells. Global gene expression profiling revealed that CD9, CD32, and CD24 were over-represented in MLL-AF4, MLL-AF9, and MLL-ENL LICs compared with normal HSCs. In patient samples, these molecules were expressed in CD34(+)CD38(+) and CD34(-) LICs but not in CD34(+)CD38(-)CD19(-)CD33(-) HSCs. Identification of LICs and LIC-specific molecules in primary human MLL-rearranged acute lymphoblastic leukemia may lead to improved therapeutic strategies for MLL-rearranged leukemia.
Project description:Infant t(4;11) acute lymphoblastic leukemia is the most common leukemia in infant patients and has a highly aggressive nature. The patients have a dismal prognosis, which has not improved in more than a decade, suggesting that a better understanding of this disease is required. In the study described here, we analyzed two previously published RNA-sequencing data sets and gained further insights into the global transcriptomes of two known subgroups of this disease, which are characterized by the presence or absence of a homeobox gene expression signature. Specifically, we identified a remarkable mutually exclusive expression of the HOXA9/HOXA10 and IRX1 genes and termed the two subgroups iALL-HOXA9 and iALL-IRX1. This expression pattern is critical as it suggests that there is a fundamental difference between the two subgroups. Investigation of the transcriptomes of the two subgroups reveals a more aggressive nature for the iALL-IRX1 group, which is further supported by the fact that patients within this group have a worse prognosis and are also diagnosed at a younger age. This could be reflective of a developmentally earlier cell of origin for iALL-IRX1. Our analysis further uncovered critical differences between the two groups that may have an impact on treatment strategies. In summary, after a detailed investigation into the transcriptional profiles of iALL-HOXA9 and iALL-IRX1 patients, we highlight the importance of acknowledging that these two subgroups are different and that this is of clinical importance.
Project description:Proteasome inhibitors bortezomib and carfilzomib are approved for the treatment of multiple myeloma and mantle cell lymphoma and have demonstrated clinical efficacy for the treatment of acute lymphoblastic leukemia (ALL). The t(4;11)(q21;q23) chromosomal translocation that leads to the expression of MLL-AF4 fusion protein and confers a poor prognosis, is the major cause of infant ALL. This translocation sensitizes tumor cells to proteasome inhibitors, but toxicities of bortezomib and carfilzomib may limit their use in pediatric patients. Many of these toxicities are caused by on-target inhibition of proteasomes in non-lymphoid tissues (e.g., heart muscle, gut, testicles). We found that MLL-AF4 cells express high levels of lymphoid tissue-specific immunoproteasomes and are sensitive to pharmacologically relevant concentrations of specific immunoproteasome inhibitor ONX-0914, even in the presence of stromal cells. Inhibition of multiple active sites of the immunoproteasomes was required to achieve cytotoxicity against ALL. ONX-0914, an inhibitor of LMP7 (ß5i) and LMP2 (ß1i) sites of the immunoproteasome, and LU-102, inhibitor of proteasome ß2 sites, exhibited synergistic cytotoxicity. Treatment with ONX-0914 significantly delayed the growth of orthotopic ALL xenograft tumors in mice. T-cell ALL lines were also sensitive to pharmacologically relevant concentrations of ONX-0914. This study provides a strong rationale for testing clinical stage immunoproteasome inhibitors KZ-616 and M3258 in ALL.
Project description:Relapse remains the main cause of MLL-rearranged (MLL-r) acute lymphoblastic leukemia (ALL) treatment failure resulting from persistence of drug-resistant clones after conventional chemotherapy treatment or targeted therapy. Thus, defining mechanisms underlying MLL-r ALL maintenance is critical for developing effective therapy. PRMT1, which deposits an asymmetric dimethylarginine mark on histone/non-histone proteins, is reportedly overexpressed in various cancers. Here, we demonstrate elevated PRMT1 levels in MLL-r ALL cells and show that inhibition of PRMT1 significantly suppresses leukemic cell growth and survival. Mechanistically, we reveal that PRMT1 methylates Fms-like receptor tyrosine kinase 3 (FLT3) at arginine (R) residues 972 and 973 (R972/973), and its oncogenic function in MLL-r ALL cells is FLT3 methylation dependent. Both biochemistry and computational analysis demonstrate that R972/973 methylation could facilitate recruitment of adaptor proteins to FLT3 in a phospho-tyrosine (Y) residue 969 (Y969) dependent or independent manner. Cells expressing R972/973 methylation-deficient FLT3 exhibited more robust apoptosis and growth inhibition than did Y969 phosphorylation-deficient FLT3-transduced cells. We also show that the capacity of the type I PRMT inhibitor MS023 to inhibit leukemia cell viability parallels baseline FLT3 R972/973 methylation levels. Finally, combining FLT3 tyrosine kinase inhibitor PKC412 with MS023 treatment enhanced elimination of MLL-r ALL cells relative to PKC412 treatment alone in patient-derived mouse xenografts. These results indicate that abolishing FLT3 arginine methylation through PRMT1 inhibition represents a promising strategy to target MLL-r ALL cells.
Project description:IntroductionMLL-rearranged acute lymphoblastic leukemia (ALL) in infants (<1 year) is characterized by high relapse rates and a dismal prognosis. To facilitate the discovery of novel therapeutic targets, we here searched for genes directly influenced by the repression of various MLL fusions.MethodsFor this, we performed gene expression profiling after siRNA-mediated repression of MLL-AF4, MLL-ENL, and AF4-MLL in MLL-rearranged ALL cell line models. The obtained results were compared with various already established gene signatures including those consisting of known MLL-AF4 target genes, or those associated with primary MLL-rearranged infant ALL samples.ResultsGenes that were down-regulated in response to the repression of MLL-AF4 and MLL-ENL appeared characteristically expressed in primary MLL-rearranged infant ALL samples, and often represented known MLL-AF4 targets genes. Genes that were up-regulated in response to the repression of MLL-AF4 and MLL-ENL often represented genes typically silenced by promoter hypermethylation in MLL-rearranged infant ALL. Genes that were affected in response to the repression of AF4-MLL showed significant enrichment in gene expression profiles associated with AF4-MLL expressing t(4;11)+ infant ALL patient samples.ConclusionWe conclude that the here identified genes readily responsive to the loss of MLL fusion expression potentially represent attractive therapeutic targets and may provide additional insights in MLL-rearranged acute leukemias.
Project description:B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer, with cure rates of ∼80%. MLL-rearranged (MLLr) B-ALL (MLLr-B-ALL) has, however, an unfavorable prognosis with common therapy refractoriness and early relapse, and therefore new therapeutic targets are needed for relapsed/refractory MLLr-B-ALL. MLLr leukemias are characterized by the specific expression of chondroitin sulfate proteoglycan-4, also known as neuron-glial antigen-2 (NG2). NG2 was recently shown involved in leukemia invasiveness and central nervous system infiltration in MLLr-B-ALL, and correlated with lower event-free survival (EFS). We here hypothesized that blocking NG2 may synergize with established induction therapy for B-ALL based on vincristine, glucocorticoids, and L-asparaginase (VxL). Using robust patient-derived xenograft (PDX) models, we found that NG2 is crucial for MLLr-B-ALL engraftment upon intravenous (i.v.) transplantation. In vivo blockade of NG2 using either chondroitinase-ABC or an anti-NG2-specific monoclonal antibody (MoAb) resulted in a significant mobilization of MLLr-B-ALL blasts from bone marrow (BM) to peripheral blood (PB) as demonstrated by cytometric and 3D confocal imaging analysis. When combined with either NG2 antagonist, VxL treatment achieved higher rates of complete remission, and consequently higher EFS and delayed time to relapse. Mechanistically, anti-NG2 MoAb induces neither antibody-dependent cell-mediated not complement-dependent cytotoxicity. NG2 blockade rather overrides BM stroma-mediated chemoprotection through PB mobilization of MLLr-B-ALL blasts, thus becoming more accessible to chemotherapy. We provide a proof of concept for NG2 as a therapeutic target for MLLr-B-ALL.
Project description:BACKGROUND:Circular RNAs (circRNAs) represent a type of endogenous noncoding RNAs that are generated by back-splicing events and favor repetitive sequences. Recent studies have reported that cancer-associated chromosomal translocations could juxtapose distant complementary repetitive intronic sequences, resulting in the aberrant formation of circRNAs. However, among the reported fusion genes, only a small number of circRNAs were found to originate from fusion regions during gene translocation. We question if circRNAs could also originate from fusion partners during gene translocation. METHODS:Firstly, we designed divergent primers for qRT-PCR to identify a circRNA circAF4 in AF4 gene and investigated the expression pattern in different types of leukemia samples. Secondly, we designed two small interfering RNAs specially targeting the back-spliced junction point of circAF4 for functional studies. CCK8 cell proliferation and cell cycle assay were performed, and a NOD-SCID mouse model was used to investigate the contribution of circAF4 in leukemogenesis. Finally, luciferase reporter assay, AGO2 RNA immunoprecipitation (RIP), and RNA Fluorescent in Situ Hybridization (FISH) were performed to confirm the relationship of miR-128-3p, circAF4, and MLL-AF4 expression. RESULTS:We discovered a circRNA, named circAF4, originating from the AF4 gene, a partner of the MLL fusion gene in MLL-AF4 leukemia. We showed that circAF4 plays an oncogenic role in MLL-AF4 leukemia and promotes leukemogenesis in vitro and in vivo. More importantly, knockdown of circAF4 increases the leukemic cell apoptosis rate in MLL-AF4 leukemia cells, while no effect was observed in leukemia cells that do not carry the MLL-AF4 translocation. Mechanically, circAF4 can act as a miR-128-3p sponge, thereby releasing its inhibition on MLL-AF4 expression. We finally analyzed most of the MLL fusion genes loci and found that a number of circRNAs could originate from these partners, suggesting the potential roles of fusion gene partner-originating circRNAs (named as FP-circRNAs) in leukemia with chromosomal translocations. CONCLUSION:Our findings demonstrate that the abnormal elevated expression of circAF4 regulates the cell growth via the circAF4/miR-128-3p/MLL-AF4 axis, which could contribute to leukemogenesis, suggesting that circAF4 may be a novel therapeutic target of MLL-AF4 leukemia.