Merging short and stranded long reads improves transcript assembly
Ontology highlight
ABSTRACT: New tools for improved long-read transcript assembly and coalescence with its short-read counterpart are required. Using our short- and long-read measurements from different cell lines with spiked-in standards, we systematically compared key parameters and biases in the read alignment and assembly of transcripts. We report a cDNA synthesis artifact in long-read datasets that impacts the identity and quantitation of assembled transcripts. We developed a computational pipeline to strand long-read cDNA libraries that markedly improves assembly of transcripts from long-reads. Incorporating stranded long-reads in a new hybrid assembly approach, we demonstrate its efficacy for improved characterization of challenging lncRNA transcripts. Our workflow can be applied to a wide range of transcriptomics datasets for superior demarcation of transcript ends and refined isoform structure, which can enable better differential gene expression analyses and molecular manipulations of transcripts.
ORGANISM(S): Homo sapiens
PROVIDER: GSE215355 | GEO | 2023/10/14
REPOSITORIES: GEO
ACCESS DATA