GsMTx4 suppresses pro-inflammatory gene expression in DSS-induced colitis in mice.
Ontology highlight
ABSTRACT: The spider venom-derived peptide GsMTx4 specifically inhibits mechanosensory ion channels. It has been reported that GsMTx4 plays an immunoregulatory role in several inflammatory conditions. Therefore, we administrated GsMTx4 to mice with dextran sodium sulfate (DSS)-induced acute colitis, to explore whether it regulates inflammatory responses in colitis.
Project description:Adamts12-deficient mice undergo more severe colitis than WT mice after induction with DSS. We used microarrays to determine the gene expression differences between Adamts12-deficient and WT mice during ulcerative colitis induced with DSS (dextran sodium sulfate) Fragments of distal colon from DSS-treated (2% DSS during 7 days and 1 day of recovery) and untreated Adamts12-deficient and WT mice were obtained for RNA extraction and hybridiztion with Affymetrix microarrays
Project description:To find out which miRNAs are significantly differential expression and potentially involved in the process of inflammation promoting carcinogenesis of colorectal cancer (CRC). We established a colitis-associated CRC (AOM/DSS, Azoxymethane/Dextran sulfate sodium salt) model, colitis (DSS) model and high dose carcinogen (AOM, about 5 times AOM amount given than AOM/DSS model) model. At day 100 when tumor formed in AOM/DSS bearing mice (colitis-associated CRC mice) but no tumor was found in AOM (high dose carcinogen) and DSS model, we employed miRNA microarray as a discovery platform to identify genes with the potential to involve in the progression of CRC promoted by inflammation. 5-7 weeks female BALB/c mice, (1) AOM/DSS group: AOM 12.5mg/kg i.p. at day 1, DSS drinking 5d/21dx3circles from day 5; (2) AOM group: AOM 10mg/kg i.p. 1/weekx6 from day 1; (3) DSS group: DSS drinking 5d/21dx3circles from day 5. The distal colon epithelial tissues were collected at day100 when tumor formed in AOM/DSS bearing mice. The miRNA microarray experiments were performed together.
Project description:Adamts12-deficient mice undergo more severe colitis than WT mice after induction with DSS. We used microarrays to determine the gene expression differences between Adamts12-deficient and WT mice during ulcerative colitis induced with DSS (dextran sodium sulfate)
Project description:Experimental colitis was induced in mice by the administration of 2% (w/v) Dextran sulfate sodium salt (DSS, colitis grade, 36-50kDa, MP Biomedicals) in the drinking water for 7 days followed by normal drinking water w/o DSS. Distal colons were collected two days later.
Project description:To find out which miRNAs are significantly differential expression and potentially involved in the process of inflammation promoting carcinogenesis of colorectal cancer (CRC). We established a colitis-associated CRC (AOM/DSS, Azoxymethane/Dextran sulfate sodium salt) model, colitis (DSS) model and high dose carcinogen (AOM, about 5 times AOM amount given than AOM/DSS model) model. At day 100 when tumor formed in AOM/DSS bearing mice (colitis-associated CRC mice) but no tumor was found in AOM (high dose carcinogen) and DSS model, we employed miRNA microarray as a discovery platform to identify genes with the potential to involve in the progression of CRC promoted by inflammation.
Project description:To find out which mRNAs are significantly differential expression and potentially involved in the process of inflammation promoting carcinogenesis of colorectal cancer (CRC). We established a colitis-associated CRC (AOM/DSS, Azoxymethane/Dextran sulfate sodium salt) model, colitis (DSS) model and high dose carcinogen (AOM, about 5 times AOM amount given than AOM/DSS model) model. At day 100 when tumor formed in AOM/DSS bearing mice (colitis-associated CRC mice) but no tumor was found in AOM (high dose carcinogen) and DSS model, we employed whole genome microarray expression profiling as a discovery platform to identify genes with the potential to involve in the progression of CRC promoted by inflammation. 5-7 weeks female BALB/c mice, (1) AOM/DSS group: AOM 12.5mg/kg i.p. at day 1, DSS drinking 5d/21dx3circles from day 5; (2) AOM group: AOM 10mg/kg i.p. 1/weekx6 from day 1; (3) DSS group: DSS drinking 5d/21dx3circles from day 5. The distal colon epithelial tissues were collected at day100 when tumor formed in AOM/DSS bearing mice. The whole genome microarray expression profiling experiments were performed together.
Project description:Experimental colitis was induced in mice by the administration of 1.5% (w/v) Dextran sulfate sodium salt (DSS, colitis grade, 36-50kDa, MP Biomedicals) in the drinking water for 7 days followed by normal drinking water w/o DSS. Distal colons were collected two days later.
Project description:To find out which mRNAs are significantly differential expression and potentially involved in the process of inflammation promoting carcinogenesis of colorectal cancer (CRC). We established a colitis-associated CRC (AOM/DSS, Azoxymethane/Dextran sulfate sodium salt) model, colitis (DSS) model and high dose carcinogen (AOM, about 5 times AOM amount given than AOM/DSS model) model. At day 100 when tumor formed in AOM/DSS bearing mice (colitis-associated CRC mice) but no tumor was found in AOM (high dose carcinogen) and DSS model, we employed whole genome microarray expression profiling as a discovery platform to identify genes with the potential to involve in the progression of CRC promoted by inflammation.
Project description:The lack of suitable animal models reflecting chronically relapsing inflammation and tissue remodeling have hindered fibrosis research in inflammatory bowel diseases (IBD). This study investigated changes in connective tissue in a chronic murine model using different cycles of dextran sodium sulphate (DSS) to mimic the relapsing nature of the disease. We used whole gene expression arrays to study differences in colonic gene expression levels between acute and more chronic DSS colitis,
Project description:L-Arginine (L-Arg) is the substrate for both inducible nitric oxide synthase and arginase, which are upregulated in human IBD and in mouse colitis models. We have found that L-Arg supplementation enhances wound restitution in vitro, and improves the clinical parameters of weight loss, survival, and colon weight/length, in dextran sulfate sodium (DSS) induced murine colitis. Our aim was to further identify the potential mechanisms underlying the clinical benefit of L-Arg supplementation. 12 Total samples were analyzed, 3 samples from each of 4 groups. We generated the following pairwise comparisons: Ctrl vs Ctrl + L-Arg; Ctrl vs DSS; DSS vs DSS + L-Arg; Ctrl + L-Arg vs DSS, Ctrl + L-Arg vs DSS + L-Arg. Genes with a p-value < 0.01 and a fold-change ≥2 were selected. To identify genes that were altered in response to L-Arg, we performed the following multiple sample comparisons using a p-value < 0.01 and a fold-change ≥2: Ctrl vs DSS vs DSS + L-Arg