Human iPSCs derived under feeder free conditions displays an unqiue cell cycle and DNA replication genotype
Ontology highlight
ABSTRACT: Induced pluripotent stem cells (iPSCs) have been generated from various somatic cells under feeder-layer conditions. These feeder-derived iPSCs generated in different labs exhibit greater variability than between different traditional embryo derived hESC lines. For that reason, it is important to develop a standard and defined system for deriving autologous patient stem cells. We have generated iPSCs under feeder-free conditions using Matrigel coated vessels in chemically defined medium, mTeSR1. These feeder-free derived iPSCs are in many ways similar to feeder-derived iPSCs and also to hESCs, with respect to their pluripotent gene expression (OCT4, NANOG, SOX2), protein expression (OCT4, NANOG, SSEA4, TRA160) and differentiation capabilities. We conducted a whole genomic transcript analysis using Affymetrix Human Gene 1.0 ST arrays to elucidate the important differences between traditional feeder-derived iPSCs and feeder-free derived iPSCs. We reveal that feeder-free iPSCs have over-represented terms belonging to DNA replication and cell cycle genes which are lacking in feeder-derived iPSCs. Feeder-free iPSCs are in many aspects more similar to hESCs including; apoptosis, chromatin modification enzymes and mitochondrial energy metabolism. We have also identified potential biomarkers for fully reprogrammed iPSCs (FRZB) and partially reprogrammed iPSCs (POTEG, MX2) based on their expression trends across all cell types. In conclusion, feeder-free derived iPSCs is transcriptomically more similar to hESCs than feeder derived iPSCs, in many biological functions.
ORGANISM(S): Homo sapiens
PROVIDER: GSE21655 | GEO | 2011/06/03
SECONDARY ACCESSION(S): PRJNA125883
REPOSITORIES: GEO
ACCESS DATA