Structure Activity Relationship Read Across and Transcriptomics for Branched Carboxylic Acids
Ontology highlight
ABSTRACT: The purpose of this study was to use chemical similarity evaluations, transcriptional profiling, in vitro toxicokinetic data and physiologically based pharmacokinetic (PBPK) models to support read across for a series of branched carboxylic acids using valproic acid (VPA), a known developmental toxicant, as a comparator. The chemicals included 2-propylpentanoic acid (VPA), 2-ethylbutanoic acid (EBA), 2-ethylhexanoic acid (EHA), 2-methylnonanoic acid (MNA), 2-hexyldecanoic acid (HDA), 2-propylnonanoic acid (PNA), dipentyl acetic acid (DPA) or 2-pentylheptanoic acid (PHA), octanoic acid (OA, a straight chain alkyl acid) and 2-ethylhexanol. Transcriptomics was evaluated in four cell types (A549, HepG2, MCF7 and iCell cardiomyocytes) 6 hours after exposure to 3 concentrations of the compounds, using the L1000 platform. The transcriptional profiling data indicate that two- or three-carbon alkyl substituents at the alpha position of the carboxylic acid (EHA and PNA) elicit a transcriptional profile similar to the one elicited by VPA. The transcriptional profile is different for the other chemicals tested, which provides support for limiting read across from VPA to much shorter and longer acids. Molecular docking models for histone deacetylases, the putative target of VPA, provides a possible mechanistic explanation for the activity cliff elucidated by transcriptomics. In vitro toxicokinetic data was utilized in a PBPK model to estimate internal dosimetry. The PBPK modeling data show that as the branched chain increases, predicted plasma Cmax decreases. This work demonstrates how transcriptomics and other mode of action-based methods can improve read across.
Project description:Transcriptional profiling of human placenta-derived JEG-3 cell line comparing vehicle control with 7.38 mM of valproic acid(VPA)-treated JEG-3 cells for 48 hr. 7.38 mM valproic acid(VPA) induced the 30% inhibiotion of JEG-3 cell proliferation, G1 phase cell cycle arrest and the reduction of cell size. The Goal was to analyze the mechanism of valproic acid-induced adverse effects in placental cells. Two-condition experiment, JEG-3 cells vs. valproic acid(VPA)-treated JEG-3 cells. Biological replicates: 3 control replicates, 3 VPA-treated replicates.
Project description:Traditional toxicity testing has been unable to keep pace with the introduction of new chemicals into commerce. Consequently, there are limited or no toxicity data upon which to base a risk assessment for many chemicals to which fish and wildlife may be exposed. Per- and polyfluoroalkyl substances (PFAS) are emblematic of this issue in that most the ecological hazards of most PFAS remain uncharacterized. The present study employed a high throughput assay to identify the concentration at which 20 PFAS, with diverse properties, elicited a concerted gene expression response in larval fathead minnows (Pimephales promelas, 5-6 days post-fertilization) exposed for 24 h. Based on a reduced transcriptome approach that measured whole body expression of 1832 genes, the median transcriptomic point of departure (tPOD) for the 20 PFAS tested was 10 µM. Longer chain carboxylic acids (12-13 C-F) and an eight C-F di-alcohol, N-alkyl sulfonamide, and telomer sulfonic acid were among the most potent PFAS, eliciting gene expression responses at concentrations below 1 µM. With a few exceptions, larval fathead minnow tPODs were concordant with those based on whole transcriptome response in human cell lines. However, larval fathead minnow tPODs were often greater than those for Daphnia magna exposed to the same PFAS. The tPODs overlapped concentrations at which other sub-lethal effects have been reported in fish (available for 10 PFAS; including a range of species, life stages, and study designs). Nonetheless, fathead minnow tPODs were all orders of magnitude higher than aqueous PFAS concentrations detected in tributaries of the North American Great Lakes suggesting a substantial margin of safety in those systems, even for PFAS with significant potential for bioaccumulation. Overall, results broadly support the use of a fathead minnow larval transcriptomics assay to derive screening level potency estimates for use in ecological risk-based prioritization. Traditional toxicity testing has been unable to keep pace with the introduction of new chemicals into commerce. Consequently, there are limited or no toxicity data upon which to base a risk assessment for many chemicals to which fish and wildlife may be exposed. Per- and polyfluoroalkyl substances (PFAS) are emblematic of this issue in that most the ecological hazards of most PFAS remain uncharacterized. The present study employed a high throughput assay to identify the concentration at which 20 PFAS, with diverse properties, elicited a concerted gene expression response in larval fathead minnows (Pimephales promelas, 5-6 days post-fertilization) exposed for 24 h. Based on a reduced transcriptome approach that measured whole body expression of 1832 genes, the median transcriptomic point of departure (tPOD) for the 20 PFAS tested was 10 µM. Longer chain carboxylic acids (12-13 C-F) and an eight C-F di-alcohol, N-alkyl sulfonamide, and telomer sulfonic acid were among the most potent PFAS, eliciting gene expression responses at concentrations below 1 µM. With a few exceptions, larval fathead minnow tPODs were concordant with those based on whole transcriptome response in human cell lines. However, larval fathead minnow tPODs were often greater than those for Daphnia magna exposed to the same PFAS. The tPODs overlapped concentrations at which other sub-lethal effects have been reported in fish (available for 10 PFAS; including a range of species, life stages, and study designs). Nonetheless, fathead minnow tPODs were all orders of magnitude higher than aqueous PFAS concentrations detected in tributaries of the North American Great Lakes suggesting a substantial margin of safety in those systems, even for PFAS with significant potential for bioaccumulation. Overall, results broadly support the use of a fathead minnow larval transcriptomics assay to derive screening level potency estimates for use in ecological risk-based prioritization.
Project description:The project had 2 goals: 1) To evaluate the transcriptional response of 3 prototypical toxicants (Clofibrate, VPA, and DEHP) on rat lever. 2) To evaluate the impact pooling samples has on data analysis. Keywords = Clofibrate Keywords = Diethylhexyl phthalate Keywords = Phthalic acid bis(2-ethylhexyl ester) Keywords = Sodium Valproate Keywords = Valproic Acid Keywords = VPA Keywords = vehicle Keywords: other
Project description:Transcriptional profiling of human placenta-derived JEG-3 cell line comparing vehicle control with 7.38 mM of valproic acid(VPA)-treated JEG-3 cells for 48 hr. 7.38 mM valproic acid(VPA) induced the 30% inhibiotion of JEG-3 cell proliferation, G1 phase cell cycle arrest and the reduction of cell size. The Goal was to analyze the mechanism of valproic acid-induced adverse effects in placental cells.
Project description:Branched‐chain amino acid (BCAA) metabolism is a central hub for energy production and regulation of numerous physiological processes. Controversially, both increased and decreased levels of BCAAs are associated with longevity. Using genetics and multi‐omics analyses in Caenorhabditis elegans, we identified adaptive regulation of the ubiquitin‐proteasome system (UPS) in response to defective BCAA catabolic reactions after the initial transamination step. Worms with impaired BCAA metabolism show a slower turnover of a GFP‐based proteasome substrate, which is suppressed by loss‐of‐function of the first BCAA catabolic enzyme, the branched‐chain aminotransferase BCAT‐1. The exogenous supply of BCAA‐derived carboxylic acids, which are known to accumulate in the body fluid of patients with BCAA metabolic disorders, is sufficient to regulate the UPS. The link between BCAA intermediates and UPS function presented here sheds light on the unexplained role of BCAAs in the aging process and opens future possibilities for therapeutic interventions.
Project description:The goal of this study is to define genes that are differentially expressed in Down syndrome leukemic blasts after treatment with valproic acid (VPA) Here we report the identification gene sets that are downregulated in Down syndrome leukemic cell lines after exposure to valproic acid (VPA) CMK and CMY cells were treated with VPA for 24h and 48h with 1mM or 2mM VPA. Their gene expression profile was compared against the untreated control.
Project description:Valproic acid (VPA) is a potent inducer of neural tube defects (ntd:s) in both human and mouse, but its mechanism of teratogenicity is not know. The mouse embryonic stem cell line R1, may be relevant as an in vitro model of teratogenicity and was evaluated with exposures to VPA,and the two VPA anlogs (S)-2-pentyl-4-pentynoic acid, and 2-ethyl-4-methyl-pentanoic acid to profile the gene expression response. Those profiles may reveal biomarkers of teratogenic exposures in an in vitro system as well as give mechanistic input of the teratogenicity of VPA.
Project description:The goal of this study is to define genes that are differentially expressed in Down syndrome leukemic blasts after treatment with valproic acid (VPA) Here we report the identification gene sets that are downregulated in Down syndrome leukemic cell lines after exposure to valproic acid (VPA)