Directed Evolution of an Adenine Base Editor with Increased Activity and Context Compatibility [RNA-seq data]
Ontology highlight
ABSTRACT: It is known that current the-art-of-the-state TadA8 and TadA8e which evolved from E. coli TadA. They inherited the 'YA' context from tRNA deaminase. We started with wildtype E. coli TadA and designed an evolution campaign to force TadA variants to deaminate “GA” with fast kinetics. Three rounds of de novo directed evolution followed by DNA shuffling led to TadA8r, a TadA variant of superior “RA” deamination activity. TadA8r acts on a broadened editing window when fused to Streptococcus pyogenes Cas9 (SpCas9) and delivers robust editing at PAM distal positions. While highly active at on-target sites, ABE8r shows off-target DNA and RNA editing much lower than ABE8e. The off-target effects of ABE8r can be further mitigated by introducing a V106W substitution23, a R153 deletion22, or by mRNA delivery. Lastly, we demonstrate ABE8r-mediated correction of G1961E in ABCA4, the most prevalent mutation driving Stargardt disease (STGD1), in a “GA” context. ABE8r, with its superior activity and broadened context compatibility, complements and expands the current ABE family.
ORGANISM(S): Homo sapiens
PROVIDER: GSE220469 | GEO | 2023/09/14
REPOSITORIES: GEO
ACCESS DATA