H3K79me3 ChIP-Seq at FRB-Pyk1 and WT strains under addition of DMSO treatment
Ontology highlight
ABSTRACT: The glycolytic enzyme, pyruvate kinase Pyk1 maintains telomere heterochromatin by phosphorylating histone H3T11 (H3pT11), which promotes SIR (silent information regulator) complex binding at telomeres and prevents autophagy-mediated Sir2 degradation. However, the exact action mechanism of H3pT11 is poorly understood. Here, we identify Dot1-catalyzed H3K79 tri-methylation (H3K79me3) as the downstream effector of H3pT11 and uncover how this histone crosstalk regulates autophagy and telomere silencing. Mechanistically, Pyk1-catalyzed H3pT11 directly reduces the binding of Dot1 to chromatin and inhibits Dot1-catalyzed H3K79me3, which leads to transcriptional repression of autophagy genes and reduced autophagy. Despite the antagonism between H3pT11 and H3K79me3, they synergically promote the binding of SIR complex at telomeres to maintain telomere silencing. Furthermore, we identify Reb1 as a telomere-associated factor that recruits Pyk1-containing SESAME (Serine-responsive SAM-containing Metabolic Enzyme) complex to telomere regions to phosphorylate H3T11 and prevent the invasion of H3K79me3 from euchromatin into heterochromatin to maintain telomere silencing. Together, these results uncover a novel histone crosstalk and provide insights into dynamic regulation of silent heterochromatin and autophagy in response to cell metabolism.
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE220482 | GEO | 2022/12/10
REPOSITORIES: GEO
ACCESS DATA