Proline synthetase PYCR1 acts as a metabolic reprogrammer dictating breast cancer stemness under chronic stress
Ontology highlight
ABSTRACT: Aberrant proline metabolism contributes to cancer progression, yet the underlying mechanism of proline metabolic disorders in regulating cancer stem-like cells (CSCs) remains unclear. Here, we find that proline synthetase PYCR1 is critical for breast cancer stemness and tumor growth through synthesizing proline. To explore the downstream targets responsible for the increase in proline-mediated stem-like traits in breast cancer, we performed RNA-seq based transcriptome analysis of PYCR1-knockdown (shP1-1 and shP1-2) MDA-MB-231 cells versus control (shNC) MDA-MB-231 cells. Among the differentially expressed genes (DEGs) identified in shP1-1 and shP1-2 cells, 361 genes and 214 genes were downregulated, respectively. We then performed KEGG pathways enrichment analysis in downregulated genes and found that the cGMP-PKG signaling pathway was among the top 1 enriched pathways in both shP1-1 and shP1-2 groups.
Project description:Analysis of the effect of shRNA-mediated knockdown of SOX4 on global gene expression levels in MDA-MB-231 human breast cancer cells. Results were used for the identification of overlapping up- and downregulated genes in TRPM7 + SOX4 shRNA MDA-MB-231 cells
Project description:Aurora Kinase B and ZAK interaction model
Equivalent of the stochastic model used in "Network pharmacology model predicts combined Aurora B and ZAK inhibition in MDA-MB-231 breast cancer cells" by Tang et. al. 2018.
The only difference is cell division and partitioning of the components, which are available in the original model for SGNS2.
Project description:The project profiled the expression patterns in hypoxia induced secretomes between MDA-MB-231 parental and MDA-MB-231 Bone Tropic (BT) breast cancer cell lines which have been previously generated by Massague and colleagues (Kang et al. Cancer Cell 2003).
Project description:Analysis of the effect of shRNA-mediated knockdown of TRPM7 on gene expression levels in MDA-MB-231 human breast cancer cells. Results were used for the identification of so-called epithelial-mesenchymal transcription factors that were affected by TRPM7 knockdown and for the analysis of overlapping up- and downregulated genes in shT7#1 + shSOX4#1 MDA-MB-231 cells
Project description:The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene expression profiles of non-invasive MCF-7 and invasive MDA-MB-231 cells exposed to dioscin (DS), a steroidal saponin isolated from the roots of wild yam, (Dioscorea villosa). Initially the differential expression of genes (DEG) was identified that followed pathway enrichment analysis (PEA). Of the genes queried on OneArray, we identified 4641 DEG changed between MCF-7 and MDA-MB-231 cells (vehicle-treated) with cut-off log2 |fold change|â§ 1. Among these genes, 2439 genes are upregulated and 2002 genes are downregulated. DS exposure (2.30 ïM, 72 h) to these cells identified 801 (MCF-7) and 96 (MDA-MB-231) DEG that showed significant difference compared to untreated cells (p<0.05). Within these gene sets, DS is able to upregulate 395 genes and downregulate 406 genes in MCF-7 and upregulate 36 and downregulate 60 genes in MDA-MB-231 cells. Further comparison of DEG between MCF-7 and MDA-MB-231 cells exposed to DS identified 3626 DEG of which 1700 were upregulated and 1926 genes were down-regulated. From PEA, 12 canonical pathways were significantly altered between these two cell lines (MCF-7 and MDA-MB-231). However, no alteration in any of these pathways was noticed in MCF-7 cell, while in MDA-MB-231 cells only MAPK pathway showed significant alteration. When PEA comparison was made on DS exposed cells, it was observed that only 2 pathways were significantly affected. Further, to identify shared DEG, which are targeted by DS and overlapped in both MCF-7 and MDA-MB-231 cells, we performed intersection analysis (Venn diagram). We found that only 7 DEG are overlapped of which six are reported in the database. This study highlights the diverse gene networks and pathways through which DS exhibits its effect on breast cancer cells. Two condition experiment. Human breast cancer Cell line MCF-7 groups: Vehicle control and dioscin treated; Human breast cancer cell line MDA-MB-231 cell group; vehicle control and dioscin-treated. Biological replicates: MCF-7 control compared to MCF-7 dioscin treated; MDA-MB-231 control compated to MDA-MB-231 dioscin-treated; MCF-7 control compared to MDA-MB-231 control; MCF-7 dioscin treated compared to MDA-MB-231 dioscin-treated. duplicate array
Project description:Breast cancer cell line MDA-MB-231 was treated with DMSO or UF010, a novel HDAC inhibitor for 24 hours. The impact of UF010 treatment on global gene expression was determined. We used Affymetrix Human Transcriptome Array 2.0 (HTA-2_0) to analyze genes that were up or downregulated upon UF010 exposure. MDA-MB-231 cells were treated with DMSO (control) or 1.0 µM of UF010 for 24 hours.Total RNAs were isolated for hybridization on Affymetrix microarrays.
Project description:To investigate the effects of breast cancer derived EVs on liver metabolism,we inoculated MDA-MB-231,231 /Rab27A KD and 231 /miR-9 KO cells into subcutaneous tumor in NSG mice. We then performed gene expression profiling analysis using data obtained from RNA-seq of liver from mice xenografted MDA-MB-231 cells (tumor bearing) or MDA-MB-231/Rab27A KD cells (231/Rab27A KD) or MDA-MB-231 /miR-9 KO (231/miR-9 KO) and tumor free mice.
Project description:Mesenchymal stromal cells were cultured in 3D PEG hydrogels for 7 days in the presence of serum-free media or conditioned media from a panel of breast cancer cells (MCF-7, MDA-MB-231, MDA-MB-231 lung-tropic, MDA-MB-231 brain-tropic, MDA-MB-231 bone-tropic). In all cases, the secretomes were collected after cancer cells were in serum-free media for 24h.
Project description:To investigate the function of Neuropilin-1 (NRP-1) in breast cancer MDA-MB-231 cells. CRISPR-Cas9 gene editing was used to knockout (KO) the NRP-1 gene in MDA-MB-231 human triple-negative breast cancer cells. Differentially expressed genes (DEGs) were determined in NRP-1 KO and parental MDA-MB-231 cells using whole transcriptome next-generation sequencing.