Chromatin interaction of Cebpa during adipocyte differentiation (4C-Seq)
Ontology highlight
ABSTRACT: Cebpa is a critical transcription factor gene for adipocyte differentiation and adipose tissue development. However, mechanisms controlling Cebpa expression during adipogenic differentiation remain largely unknown. Here, we generated the high-resolution chromatin interaction maps of Cebpa in 3T3-L1 preadipocytes (3T3-L1) and 3T3-L1 adipocytes (3T3-L1-AD) using circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq), and characterized differences in their chromatin interactomes and chromatin status of the interaction sites during adipogenic differentiation. We performed a 4C-seq experiment on inguinal white adipose tissue (iWAT) to evaluate whether chromatin interaction between Cebpa-L1-AD-En2 and Cebpa promoters in 3T3-L1 adipocytes also exists in mouse adipose tissue.
Project description:Gene expression profiling of pre-adipocytes 3T3-L1 reveals anti-adipogenic potential to metabolic associated diseases through whole transcriptomic analysis. We evaluated the effects of Tsuruazuki extract on pre-adipocytes 3T3-L1. We performed an untargeted whole-genome transcriptome analysis to explore functionality of Tsuru on 3T3-L1 cells.
Project description:The LIM-domain-only protein FHL2 is a modulator of signal transduction and has been shown to direct the differentiation of mesenchymal stem cells toward osteoblasts and myocytes phenotypes. We hypothesized that FHL2 may simultaneously interfere with the induction of the adipocyte lineage. Therefore, we investigated the role of FHL2 in adipocyte differentiation using pre-adipocytes isolated from mouse adipose tissue and the 3T3-L1 (pre)adipocyte cell line. Here we report that FHL2 is expressed in pre-adipocytes and for accurate adipocyte differentiation, this protein needs to be downregulated during the early stages of adipogenesis. More specifically, constitutive overexpression of FHL2 drastically inhibits adipocyte differentiation in 3T3-L1 cells, which was demonstrated by suppressed activation of the adipogenic gene expression program as shown by extensive RNAseq analyses, and diminished lipid accumulation. To identify the protein-protein interactions mediating this repressive activity of FHL2 on adipogenesis, we performed affinity-purification mass spectrometry (AP-MS). This analysis revealed the interaction of FHL2 with the Nuclear factor of activated T-cells 5 (NFAT5), an established inhibitor of adipocyte differentiation. NFAT5 knockdown rescued the inhibitory effect of FHL2 overexpression on 3T3-L1 differentiation, indicating that these proteins act cooperatively. In conclusion, we present a new regulatory function of FHL2 in early adipocyte differentiation and revealed that FHL2-mediated inhibition of pre-adipocyte differentiation is dependent on its interaction with NFAT5.
Project description:Adipose tissues are closely related to physiological functions and pathological conditions in most organs. Although differentiated 3T3-L1 preadipocytes have been used for in vitro adipose studies, the difference in cellular characteristics of adipogenic differentiation in two-dimensional (2D) culture and three-dimensional (3D) culture remain unclear. In this study, we evaluated gene expression patterns using RNA sequencing and metabolic functions using an extracellular flux analyzer in 3T3-L1 preadipocytes with and without adipogenic induction in 2D culture and 3D culture. In 2D culture, 565 up-regulated genes and 391 down-regulated genes were identified as differentially expressed genes (DEGs) by adipogenic induction of 3T3-L1 preadipocytes, whereas only 69 up-regulated genes and 59 down-regulated genes were identified as DEGs in 3D culture. Ingenuity Pathway Analysis (IPA) revealed that genes associated with lipid metabolism were identified as 2 out of the top 3 causal networks related to diseases and function in 3D spheroids, whereas only one network related to lipid metabolism was identified within the top 9 of these causal networks in the 2D planar cells, suggesting that adipogenic induction in the 3D culture condition exhibits a more adipocyte-specific gene expression pattern in 3T3-L1 preadipocytes. Real-time metabolic analysis revealed that the metabolic capacity shifted from glycolysis to mitochondrial respiration in differentiated 3T3-L1 cells in the 3D culture condition but not in those in the 2D cultured condition, suggesting that adipogenic differentiation in 3D culture induces a metabolic phenotype of well-differentiated adipocytes. Consistently, expression levels of mitochondria-encoded genes including mt-Nd6, mt-Cytb, and mt-Co1 were significantly increased by adipogenic induction of 3T3-L1 preadipocytes in 3D culture compared with those in 2D culture. Taken together, the findings suggest that induction of adipogenesis in 3D culture provides a more adipocyte-specific gene expression pattern and enhances mitochondrial respiration, resulting in more adipocyte-like cellular properties.
Project description:Bivalent H3K4me3 and H3K27me3 chromatin domains in embryonic stem cells keep active developmental regulatory genes expressed at very low levels and poised for activation. Here, we show an alternative and previously unknown bivalent modified histone signature in lineage-committed mesenchymal stem cells and preadipocytes that pairs H3K4me3 with H3K9me3 to maintain adipogenic master regulatory genes (Cebpa and Pparg) expressed at low levels yet poised for activation when differentiation is required. We show lineage-specific gene-body DNA methylation recruits H3K9 methyltransferase SETDB1 which methylates H3K9 immediately downstream of transcription start sites marked with H3K4me3 to establish the bivalent domain. At the Cebpa locus, this prevents transcription factor C/EBPβ binding, histone acetylation, and further H3K4me3 deposition and is associated with pausing of RNA polymerase II, which limits Cebpa gene expression and adipogenesis. We used microarrays to detail the global programme of gene expression in 3T3-L1 preadipocytes and 10Th1lf mesenchymal stem cells and identified up-regulated genes upon knockdown of SETDB1, MBD1, and MCAF1. SETDB1, MBD1, or MCAF1 was knocked-down in 3T3-L1 preadipocytes and 10Thalf mesenchymal stem cells for RNA extraction and hybridization on Affymetrix microarrays. Small interfering RNAs (siRNA) targeting to Setdb1, Mbd1, or Mcaf1 was transfected to 3T3-L1 preadipocytes or 10Thalf mesenchymal stem cells.
Project description:Here we have employed chromatin immunoprecipitation combined with deep sequencing to map and compare PPARM-NM-3 binding in in vitro differentiated primary mouse adipocytes isolated from epididymal, inguinal, and brown adipose tissues. While these PPARM-NM-3 binding profiles are overall similar, there are clear depot-selective binding sites. Most PPARM-NM-3 binding sites previously mapped in 3T3-L1 adipocytes can also be detected in primary adipocytes, but there are a large number of PPARM-NM-3 binding sites that are specific to the primary cells, and these tend to be located in closed chromatin regions in 3T3-L1 adipocytes. The depot-selective binding of PPARM-NM-3 is associated with highly depot-specific gene expression. This indicates that PPARM-NM-3 plays a role in the induction of genes characteristic of different adipocyte lineages and that preadipocytes from different depots are differentially preprogrammed to permit PPARM-NM-3 lineage-specific recruitment even when differentiated in vitro. Examination of PPARM-NM-3 binding in in vitro differentiatied adipocytes isolated from three different adipose depots.
Project description:3T3-L1 preadipocytes were differentiated into mature adipocytes using adipogenic differentiation media. Promoter Capture Hi-C at D0 (two days post confluency) and D7 of adipocyte differentiation was performed to analyse regulatory interactions.
Project description:Here, we have used digital genomic footprinting to precisely define protein localization for several adipogenic transcription factors at a genome-wide level. In combination with ChIP-seq data, these analyses reveal novel molecular insight into the organization of transcription factors at hotpot regions, which provides a new framework for understanding transcription factor cooperativity on chromatin. Digital genomic footprinting and gene expression in 3T3-L1 pre-adipocytes by high throughput sequencing.
Project description:3T3-L1 preadipocytes were differentiated into mature adipocytes using adipogenic differentiation media. Total RNA was isolated at D0 (two days post confluency) and D7 of adipocyte differentiation. nAnT-iCAGE sequencing was performed to analyse transcriptional start sites.
Project description:Actin dynamics, mediated by various actin-binding proteins, plays an important role in adipocyte differentiation. We investigated the role of coactosin-like F-actin binding protein (Cotl1) in adipocyte differentiation in vitro and in vivo. Cotl1 expression level was increased during adipocyte differentiation in mouse 3T3-L1 cells and primary cultured adipose-derived stem cells (ADSCs) and during weight gain in adipose tissues. However, Cotl1 deficient in 3T3-L1 and ADSCs inhibited adipocyte differentiation, and Cotl1-/- mice displayed resistance to high-fat diet (HFD)-induced weight gain, hepatic steatosis and adipocyte enlargement compared to HFD-fed wild type (WT) mice. Ingenuity Pathway Analysis of RNA-sequencing in adipose tissues of HFD-WT and HFD-Cotl1-/- mice predicted complicated relationships between Cotl1, differentiation of adipocytes, obesity and organization of actin cytoskeleton. Particularly, peroxisome proliferator-activated receptor gamma (Pparg) emerged as a central player, with Cotl1 influencing Pparg expression, consequently regulating adipocyte differentiation. These findings suggest Cotl1 as a pivotal regulator of terminal adipocyte differentiation by modulating adipogenic genes.
Project description:Growing evidence indicates that PPARγ agonists, such as rosiglitazone (RSG,), induce adipose mitochondrial biogenesis. Using microarrays, we systematically analyzed nucleus-encoded mitochondrial gene expression in two common murine adipocyte models, 3T3 L1 and C3H/10T1/2 adipocytes, and aimed to further establish the direct role of RSG, and capture the temporal changes in mitochondrial gene transcription during this process. Experiment Overall Design: Fully differentiated 3T3 L1 and C3H/10T1/2 adipocytes were treated with RSG, or DMSO vehicle for 1, 2, 4, 7, 24, and 48 hrs, and total RNA was extracted for microarray analysis.