Efficient engineering of human and mouse primary cells using peptide-assisted genome editing
Ontology highlight
ABSTRACT: Simple and efficient delivery of CRISPR genome editing systems in primary cells remains a major challenge. Here, we describe an engineered Peptide-Assisted Genome Editing (PAGE) CRISPR-Cas system for rapid and robust editing of primary cells. PAGE couples a cell-penetrating Cas protein with a cell-penetrating endosomal escape peptide in a 30-minute incubation that yields up to ~98% editing efficiency in primary human and mouse T cells. PAGE provides a broadly generalizable platform for next generation genome engineering in primary cells. CITATION INFORMATION: Zhang Zhen, Baxter Amy E, Ren Diqiu, Qin Kunhua, Chen Zeyu, Collins Sierra M., Huang Hua, Komar Chad A., Bailer Peter F., Parker Jared B., Blobel Gerd A., Kohli Rahul M., Wherry E. John*, Berger Shelley,*, and Shi Junwei*. Peptide-assisted genome editing permits efficient CRISPR engineering of primary T cells.
ORGANISM(S): Homo sapiens
PROVIDER: GSE223805 | GEO | 2023/03/20
REPOSITORIES: GEO
ACCESS DATA