Transcriptomics

Dataset Information

0

Exhausted intratumoral Vδ2- γδ T cells in human kidney cancer retain effector function [scRNA-seq]


ABSTRACT: Gamma delta (γδ) T cells reside within human tissues including tumors, but their role in mediating anti-tumor response with immune checkpoint inhibition is unknown. Using single-cell approaches, we found that kidney cancers are infiltrated by diverse Vδ2- γδ T cells, with equivalent representation of Vδ1+ and Vδ1- cells, that are distinct from γδ T cells found in normal human tissues. These tumor-resident Vδ2- T cells can express the transcriptional program of exhausted alpha beta (ab) CD8+ T cells as well as canonical markers of terminal T cell exhaustion including PD-1, TIGIT and TIM-3. While Vδ2- γδ T cells have blunted IL-2 production, they retain expression of cytolytic effector molecules and costimulatory receptors like 4-1BB. Exhausted Vδ2- γδ T cells are comprised of three distinct populations that lack TCF-7, are clonally expanded, express of cytotoxic molecules, and possess multiple Vδ2- TCRs. Human tumor-derived Vδ2- γδ T cells maintain cytotoxic function and pro-inflammatory cytokine secretion in vitro. The transcriptional program of Vδ2- T cells in pre-treatment tumor biopsies predicted subsequent clinical responses to PD-1 blockade in vivo in cancer patients. Thus, Vδ2- γδ T cells within the tumor microenvironment can contribute to anti-tumor efficacy.

ORGANISM(S): Homo sapiens

PROVIDER: GSE223808 | GEO | 2023/01/31

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2023-01-31 | GSE223806 | GEO
2020-07-31 | GSE149356 | GEO
2019-01-08 | GSE124731 | GEO
2024-03-04 | GSE260763 | GEO
| PRJNA928412 | ENA
2023-09-25 | GSE232529 | GEO
2024-07-03 | GSE271442 | GEO
| PRJNA928414 | ENA
2024-07-11 | GSE236384 | GEO
2022-10-23 | E-MTAB-9683 | biostudies-arrayexpress