Expression of Splicing Factor Genes is Reduced in Human Obesity and Contributes to Enhanced Lipogenesis
Ontology highlight
ABSTRACT: Alternative mRNA splicing provides transcript diversity and has been proposed to contribute to several human diseases. Here, we demonstrate that expression of genes regulating RNA processing is decreased in both liver and skeletal muscle of obese humans. To determine the metabolic impact of reduced splicing factor expression, we further evaluated the splicing factor, SFRS10, identified as down-regulated in obese human liver and skeletal muscle and in high fat fed rodents. siRNA-mediated reductions in SFRS10 expression induced lipogenesis and lipid accumulation in cultured hepatocytes. Moreover, SFRS10 heterozygous mice have both increased hepatic lipogenic gene expression and hypertriglyceridemia. We also demonstrate that LPIN1, a key regulator of lipid metabolism, is a splicing target of SFRS10, with reduced SFRS10 levels favoring the lipogenic β isoform of LPIN1. Importantly, LPIN1β-specific siRNA abolished the lipogenic effects of decreased SFRS10 expression. Together, our results indicate reduced expression of SFRS10 alters LPIN1 splicing and induces lipogenesis, demonstrating that reduced splicing factor expression observed in human tissues may contribute to metabolic phenotypes associated with human obesity.
Project description:Alternative mRNA splicing provides transcript diversity and has been proposed to contribute to several human diseases. Here, we demonstrate that expression of genes regulating RNA processing is decreased in both liver and skeletal muscle of obese humans. To determine the metabolic impact of reduced splicing factor expression, we further evaluated the splicing factor, SFRS10, identified as down-regulated in obese human liver and skeletal muscle and in high fat fed rodents. siRNA-mediated reductions in SFRS10 expression induced lipogenesis and lipid accumulation in cultured hepatocytes. Moreover, SFRS10 heterozygous mice have both increased hepatic lipogenic gene expression and hypertriglyceridemia. We also demonstrate that LPIN1, a key regulator of lipid metabolism, is a splicing target of SFRS10, with reduced SFRS10 levels favoring the lipogenic β isoform of LPIN1. Importantly, LPIN1β-specific siRNA abolished the lipogenic effects of decreased SFRS10 expression. Together, our results indicate reduced expression of SFRS10 alters LPIN1 splicing and induces lipogenesis, demonstrating that reduced splicing factor expression observed in human tissues may contribute to metabolic phenotypes associated with human obesity. Skeletal muscle samples were obtained from 10 lean control subjects and 7 obese subjects with either IGT or DM2 undergoing elective cholecystectomy. Data for liver samples presented in the same manuscript are available at GEO GSE15653. In this analysis RNA was isolated for cRNA preparation and hybridized to Affymetrix Human Genome U133 Plus 2.0 microarrays.
Project description:Dysfunctional adipose tissue is believed to promote the development of hepatic steatosis and systemic insulin resistance, but many of the mechanisms involved are still unclear. Lipin 1 catalyzes the conversion of phosphatidic acid to diacylglycerol (DAG), the penultimate step of triglyceride synthesis, which is essential for lipid storage. Herein we found that adipose tissue LPIN1 expression is decreased in people with obesity compared to lean subjects and low LPIN1 expression correlated with multi-tissue insulin resistance and increased rates of hepatic de novo lipogenesis. Comprehensive metabolic and multi-omic phenotyping demonstrated that adipocyte-specific Lpin1-/- mice had a metabolically-unhealthy phenotype, including liver and skeletal muscle insulin resistance, hepatic steatosis, increased hepatic de novo lipogenesis, and transcriptomic signatures of nonalcoholic steatohepatitis that was exacerbated by high-fat diets. We conclude that adipocyte lipin 1-mediated lipid storage is vital for preserving adipose tissue and systemic metabolic health and its loss predisposes mice to nonalcoholic steatohepatitis.
Project description:Hepatic lipogenesis is normally tightly regulated but is aberrantly elevated in obesity. Fibroblast Growth Factor-19 (FGF19, mouse FGF15) is a late fed-state gut hormone that decreases hepatic lipid levels by unclear mechanisms. We examined whether FGF15/19 and FGF15/19-activated Small Heterodimer Partner (SHP/NR0B2) have a role in transcriptional repression of lipogenesis. Comparative genomic analyses reveal that most of the SHP cistrome, including lipogenic genes repressed by FGF19, have overlapping CpG islands. FGF19 treatment or SHP overexpression in mice inhibits lipogenesis in a DNA methyltransferase-3a (DNMT3A)-dependent manner. FGF19-mediated activation of SHP via phosphorylation recruits DNMT3A to lipogenic genes, leading to DNA methylation and gene repression. In non-alcoholic fatty liver disease (NAFLD) patients and obese mice, occupancy of SHP and DNMT3A and DNA methylation at lipogenic genes are low, with elevated gene expression. These results demonstrate that FGF15/19 represses hepatic lipogenesis by activating SHP and DNMT3A physiologically, which is likely dysregulated in NAFLD.
Project description:Fat accumulation, de novo lipogenesis, and glycolysis are key contributors to hepatocyte reprogramming and the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). The molecular mechanisms affected by steatosis and inflammation in the obese states remain unknown. Here we report that obesity leads to dysregulated expression of protein-tyrosine phosphatases (PTPs) in the liver. Protein Tyrosine Phosphatase Receptor Kappa (PTPRK) was increased in hepatocytes by steatosis and inflammation in humans and mice, and positively correlates with PPARγ-induced lipogenic signalling. Mechanistically, PTPRK-PPARγ upregulation by fat accumulation is dependent upon Notch signalling in mouse primary hepatocytes. PTPRK knockout mice have reduced fat accumulation in adipose tissue and liver after exposure to an obesogenic diet. Phosphoproteomic analysis in isolated hepatocytes and hepatic metabolomics identified specific phosphotyrosine residues in fructose-1,6 bisphosphatase-1 and glycolysis regulation as targets of PTPRK. These changes in glycolysis and de novo lipogenesis revealed PTPRK-dependent metabolic reprogramming in hepatocytes. Moreover, hepatoma cell lines showed reduced colony-forming ability after PTPRK silencing in vitro, and PTPRK knockout mice developed smaller tumours after diethylnitrosamine-induced hepatocarcinogenesis in vivo. Computational modelling identified potential PTPRK inhibitors, which selectively reduced PTPRK activity. The compounds decreased glycolytic rates in hepatoma cell lines, PPARγ expression in primary hepatocytes and steatosis in obese mice. In conclusion, our study defines a novel mechanism for the development of MASLD, revealing a key role of PTPRK on hepatic glycolysis regulation with implications in lipid metabolism, and liver tumour development. We propose PTPRK as a potential target for metabolic liver dysfunction, and the identified inhibitors may represent promising candidates for therapy in obesity-associated liver diseases.
Project description:The lipin phosphatidate phosphatase (PAP) enzymes (lipin 1, lipin 2, and lipin 3) catalyze a step in triglyceride and phospholipid biosynthesis, and genetic lipin deficiencies cause human disease that is triggered by metabolic stress, such as fasting. We assessed the protein interactome of lipins 1, 2, and 3 in hepatocytes, and identified unique protein associations between lipin 1 and U2 mRNA spliceosome components. Lpin1–/– mouse liver exhibited aberrant mRNA splicing in the fasted state, including mRNAs involved in mRNA processing and liver maturation. Aberrant splicing could be induced in cultured hepatocytes by lipin 1 knockdown or elevated phosphatidic acid levels, suggesting a role for lipin 1 PAP activity in splicing fidelity. Refeeding Lpin1–/– animals after fasting largely restored mRNA splicing fidelity. Reduced levels of ESRP2 splicing factor exclusively in the fasted state of Lpin1–/– liver was associated with widespread aberrant exon inclusion. These findings connect lipid homeostasis with mRNA splicing, and identify aberrant mRNA splicing in lipin 1 deficiency as a potential contributor to disease symptoms triggered by fasting.
Project description:OBJECTIVE: To characterize the hormonal milieu and adipose gene expression in response to catch-up growth (CUG), a growth pattern associated with obesity and diabetes risk, in a mouse model of low birth weight (LBW). RESEARCH DESIGN AND METHODS: ICR mice were food restricted by 50% from gestational days 12.5-18.5, reducing offspring birth weight by 25%. During the suckling period, dams were either fed ad libitum, permitting CUG in offspring, or food restricted, preventing CUG. Offspring were killed at age 3 weeks, and gonadal fat was removed for RNA extraction, array analysis, RT-PCR, and evaluation of cell size and number. Serum insulin, thyroxine (T4), corticosterone, and adipokines were measured. RESULTS: At age 3 weeks, LBW mice with CUG (designated U-C) had body weight comparable with controls (designated C-C); weight was reduced by 49% in LBW mice without CUG (designated U-U). Adiposity was altered by postnatal nutrition, with gonadal fat increased by 50% in U-C and decreased by 58% in U-U mice (P < 0.05 vs. C-C mice). Adipose expression of the lipogenic genes Fasn, AccI, Lpin1, and Srebf1 was significantly increased in U-C compared with both C-C and U-U mice (P < 0.05). Mitochondrial DNA copy number was reduced by >50% in U-C versus U-U mice (P = 0.014). Although cell numbers did not differ, mean adipocyte diameter was increased in U-C and reduced in U-U mice (P < 0.01). CONCLUSIONS: CUG results in increased adipose tissue lipogenic gene expression and adipocyte diameter but not increased cellularity, suggesting that catch-up fat is primarily associated with lipogenesis rather than adipogenesis in this murine model. Epididymal fat samples were obtained at age 3 weeks from 5 control mice (CC), 5 mice exposed to in utero undernutrition (UC), and 4 mice exposed to undernutrition in utero and during suckling (UU).
Project description:Maternal obesity is linked with increased adverse outcomes for mother and fetus. However, the metabolic impact of excessive fat accumulation within the altered hormonal context of pregnancy is not well understood. We used a murine model of obesity, the high fat diet-fed C57BL/6J mouse to determine adipose tissue-mediated molecular mechanisms driving metabolic dysfunction throughout pregnancy. Remarkably, obese mice exhibited a normalization of visceral fat accumulation at late-stage pregnancy (-53%, P<0.001 E18.5) to achieve levels comparable in mass (per gram of body weight) to that of non pregnant, control diet fed mice. Moreover, whilst obese pregnant mice showed a marked glucose intolerance and apparent insulin resistance at mid-stage pregnancy (E14.5), glucose homeostasis converged with that of lean pregnant mice at late-stage pregnancy, suggesting an unexpected amelioration of the worsening metabolic dysfunction in obese pregnant mice. Transcriptomic analysis of the late-stage visceral fat indicated reduced de novo lipogenic drive (Me1, Fasn, Scd1, Dgat2), retinol metabolism (Rdh11, Rbp4) and inflammation (Mcp1, Tnfα) in obese pregnant mice that was confirmed functionally by their lower adipose proinflammatory macrophage density. Elevated expression of estrogen receptor a (ERα) in visceral adipose tissue was identified as potential unifying mechanism for the transcriptional changes and reduced adiposity of late stage obese pregnancy. Support for a role for ERα was provided by experiments showing that the ERα selective agonist PPT suppressed lipogenesis in primary mouse adipocytes and suppressed Me1, Fasn, SCD1 and Dgat2 mRNA levels in mature female human ChubS7 clonal fat cells. Our data reveal a novel role for elevated visceral adipocyte estrogen signaling as a protective mechanism against visceral fat hypertrophy and inflammation in late pregnancy. Pregnant high fat, pregnant control fat, non pregnant high fat, non pregnant control fat. Five biologial replictes each (20 samples).
Project description:Obesity is a strong risk factor for the development of type 2 diabetes. We have previously reported that in adipose tissue of obese (ob/ob) mice, the expression of adipogenic genes is decreased. When made genetically obese, the BTBR mouse strain is diabetes susceptible and the C57BL/6J (B6) strain is diabetes resistant. We used DNA microarrays and RT-PCR to compare the gene expression in BTBR-ob/ob versus B6-ob/ob mice in adipose tissue, liver, skeletal muscle, and pancreatic islets. Our results show: 1) there is an increased expression of genes involved in inflammation in adipose tissue of diabetic mice; 2) lipogenic gene expression was lower in adipose tissue of diabetes-susceptible mice, and it continued to decrease with the development of diabetes, compared with diabetes-resistant obese mice; 3) hepatic expression of lipogenic enzymes was increased and the hepatic triglyceride content was greatly elevated in diabetes-resistant obese mice; 4) hepatic expression of gluconeogenic genes was suppressed at the prediabetic stage but not at the onset of diabetes; and 5) genes normally not expressed in skeletal muscle and pancreatic islets were expressed in these tissues in the diabetic mice. We propose that increased hepatic lipogenic capacity protects the B6-ob/ob mice from the development of type 2 diabetes. Diabetes 52:688–700, 2003 Keywords: Genetic modifications
Project description:Obesity is a strong risk factor for the development of type 2 diabetes. We have previously reported that in adipose tissue of obese (ob/ob) mice, the expression of adipogenic genes is decreased. When made genetically obese, the BTBR mouse strain is diabetes susceptible and the C57BL/6J (B6) strain is diabetes resistant. We used DNA microarrays and RT-PCR to compare the gene expression in BTBR-ob/ob versus B6-ob/ob mice in adipose tissue, liver, skeletal muscle, and pancreatic islets. Our results show: 1) there is an increased expression of genes involved in inflammation in adipose tissue of diabetic mice; 2) lipogenic gene expression was lower in adipose tissue of diabetes-susceptible mice, and it continued to decrease with the development of diabetes, compared with diabetes-resistant obese mice; 3) hepatic expression of lipogenic enzymes was increased and the hepatic triglyceride content was greatly elevated in diabetes-resistant obese mice; 4) hepatic expression of gluconeogenic genes was suppressed at the prediabetic stage but not at the onset of diabetes; and 5) genes normally not expressed in skeletal muscle and pancreatic islets were expressed in these tissues in the diabetic mice. We propose that increased hepatic lipogenic capacity protects the B6-ob/ob mice from the development of type 2 diabetes. Diabetes 52:688â700, 2003 Experiment Overall Design: Four B6-ob/ob and four BTBR-ob/ob male mice at 14 weeks of age were used in the microarray study. RNA samples from two individuals were pooled for each tissue, and each pooled RNA sample was applied to an Affymetrix MGU74AV2 array. Because of the scarcity of islets in the BTBR-ob/ob mice, 4 additional mice were pooled to obtain islet RNA from these animals. Sixteen MGU74Av2 arrays (2 strains X 4 tissues X 2 replicates = 16 arrays) were used to monitor the expression level of â12,000 genes or ESTs.