Dispersal of PRC1 condensates disrupts polycomb chromatin domains and loops
Ontology highlight
ABSTRACT: Polycomb-repressive complex 1 (PRC1) has a constraining influence on 3D genome organization, mediating localized and chromosome-wide clustering of target loci. Polycomb-bound regions form transcriptionally repressive chromatin domains independent of topologically associating domains (TADs). Several subunits of PRC1 have the capacity to form biomolecular condensates through liquid-liquid phase separation (LLPS) in vitro and when tagged and over-expressed in cells. Here, we use 1,6 hexandiol (1,6-HD), which disrupts liquid-like condensates, to examine the role of endogenous PRC1 biomolecular condensates on local and chromosome-wide clustering of PRC1-bound loci. Using imaging and chromatin immunoprecipitation combined with deep sequencing (ChIP-seq) analyses, we show that PRC1-mediated localized chromatin compaction and clustering of targeted genomic loci at megabase and tens of megabase scales can be reversibly disrupted by the addition and subsequent removal of 1,6-HD to mouse embryonic stem cells (mESCs). Decompaction and dispersal of polycomb domains and clusters cannot be solely attributable to the reduction of PRC1 binding following 1,6-HD treatment as the addition of 2,5-HD has similar effects despite this alcohol not perturbing PRC1-mediated clustering, at least at the sub-megabase and megabase scales. These results suggest that weak, hydrophobic interactions between PRC1 molecules characteristic of liquid condensates do have a role in polycomb-mediated genome organization.
ORGANISM(S): Mus musculus Homo sapiens
PROVIDER: GSE224930 | GEO | 2023/02/13
REPOSITORIES: GEO
ACCESS DATA