Huangqi Decoction ameliorates kidney injury in db/db mice by regulating the BMP/Smad signaling pathway
Ontology highlight
ABSTRACT: Purpose: Our study clarifies the mechanism of Huangqi decoction (HQD) against DKD in diabetic db/db mice. Methods: Eight-week-old male diabetic db/db mice were randomly divided into four groups: Model (1% CMC), HQD-L (0.12 g/kg), HQD-M (0.36 g/kg), and HQD-H (1.08 g/kg) groups. Non-diabetic db/m mice were used as a control group. These mice received HQD treatment for 8 weeks continuously. After 8 weeks of feeding, kidneys were harvested to observe the kidney function, pathological changes, micro-assay study, and the protein expression levels. Results: HQD treatment improved the albumin/creatine ratio (ACR) and 24 h urinary albumin, prevented the pathological phenotypes of increased glomerular volume, widened mesangial areas, the proliferation of mesangial matrix, the disappearance of foot processes, the decreased expression of nephrin and the number of podocytes. The expression profile chips were assessed to reveal the global transcriptional response and predict related functions, diseases and pathways. To verify this, we found that HQD treatment activated the protein expressions of BMP1, BMP7, BMPR2, and active-Rap1 and inhibited Smad1 and phospho-ERK. In addition, HQD could improve lipid deposition in the kidneys of db/db mice. Conclusion: HQD prevents the progression of DKD in db/db mice by regulating the transcription of BMPs and their downstream target genes, inhibiting the phosphorylation of ERK and Smad1 by promoting the binding of Rap1 to GTP and regulating the lipid metabolism dysfunction. These provide a new idea for the treatment of DKD. Overall, HQD had a significant protective effect against DKD. This may be related to the fact that HQD promotes the transcription of BMPs and their downstream target genes by upregulating BMPR-II and regulates the phosphorylation of ERK and Smad by promoting the binding of Rap1 to GTP. In addition, HQD also has a noticeable role in regulating lipid metabolism dysfunction in DKD, which provides a new idea for future research on HQD.
Project description:The microRNAs (miRNAs) that can influence diabetic kidney disease (DKD) have not been fully characterized. The aim of this study was to identify the miRNAs that affect DKD and could be used as specific biomarkers or therapeutic agents. First, kidneys from two DKD mouse models were screened for differences in miRNA expression from control mice. We found that miRNA-125b-5p and miRNA-181-5p were specifically differentially expressed in the kidneys of DKD mice. Next, we administered miRNA-181b-5p-mimic to DKD mice, which reduced the albuminuria and abnormal mesangial expansion. Pathway analysis revealed that overexpression of miRNA-181-5p significantly altered the expression of 51 genes in the kidneys of DKD mice. Furthermore, the serum level of miRNA-125b-5p was significantly higher and that of miRNA-181-5p was lower in patients with DKD than in patients with other kidney diseases. These results suggest that miRNA-125b-5p and miRNA-181b-5p may represent novel diagnostic biomarkers and that miRNA-181b-5p may represent a therapeutic target for DKD.
Project description:The microRNAs (miRNAs) that can influence diabetic kidney disease (DKD) have not been fully characterized. The aim of this study was to identify the miRNAs that affect DKD and could be used as specific biomarkers or therapeutic agents. First, kidneys from two DKD mouse models were screened for differences in miRNA expression from control mice. We found that miRNA-125b-5p and miRNA-181-5p were specifically differentially expressed in the kidneys of DKD mice. Next, we administered miRNA-181b-5p-mimic to DKD mice, which reduced the albuminuria and abnormal mesangial expansion. Pathway analysis revealed that overexpression of miRNA-181-5p significantly altered the expression of 51 genes in the kidneys of DKD mice. Furthermore, the serum level of miRNA-125b-5p was significantly higher and that of miRNA-181-5p was lower in patients with DKD than in patients with other kidney diseases. These results suggest that miRNA-125b-5p and miRNA-181b-5p may represent novel diagnostic biomarkers and that miRNA-181b-5p may represent a therapeutic target for DKD.
Project description:2-Dodecyl-6-Methoxycyclohexa-2, 5 -Diene-1,4-Dione (DMDD) was purified from the roots of Averrhoa carambola L. Previous research demonstrated that DMDD is a small molecular compound with significant therapeutic potential for diabetes. However, the efficacy of DMDD to ameliorate diabetic cognitive impairment in type 2 diabetes mice has not been reported. In present study, we detected gene expression profiles in the hippocampi of diabetic db/db mice after DMDD treatment. 9-week-old male db/db mice were treated with DMDD (50 mg/kg) for 28 days followed by Y maze and novel object recognition test for behavioral evaluation. Our results showed that DMDD attenuated the spatial working memory and object recognition memory impairment in db/db mice. Using mouse lncRNA array analysis, 11 lncRNAs and 4 mRNAs with significant differential expression were identified after DMDD treatment. Among these, Hif3a expression was significantly increased in the hippocampi of diabetic db/db mice compared with db/m control mice and then decreased after DMDD treatment. Besides, DMDD treatment reduced tau protein expression, the formation of a-synuclein oligomers and high glucose-induced apoptosis in the hippocampi of db/db mice and high glucose-treated HT22 cells. DMDD protected neural cells from apoptosis by repression of Hif3a. These data suggest that DMDD can alleviate cognitive impairment by regulating apoptosis through the pro-apoptotic protein Hif3a. In conclusion, our study suggests that DMDD has great potential to be a new preventive and therapeutic compound for diabetic cognitive impairment.
Project description:Investigation of gene expression level changes in pancreatic and liver tissues of diabetic db/db mice supplemented with selenate, compared to the diabetic db/db mice administered placebo. Fasting blood glucose levels increased continuously in diabetic db/db mice administered placebo (DMCtrl) but decreased gradually in selenate-supplemented diabetic db/db mice (DMSe) and approached normal values when the experiment ended. The size of pancreatic islets increased, causing the plasma insulin concentration to double in DMSe mice compared with that in DMCtrl mice. Two six chip studies using total RNA respectively isolated from pancreatic and liver tissues of three selenate-supplemented diabetic db/db mice, and three diabetic db/db mice administered placebo.
Project description:Investigation of gene expression level changes in pancreatic and liver tissues of diabetic db/db mice supplemented with selenate, compared to the diabetic db/db mice administered placebo. Fasting blood glucose levels increased continuously in diabetic db/db mice administered placebo (DMCtrl) but decreased gradually in selenate-supplemented diabetic db/db mice (DMSe) and approached normal values when the experiment ended. The size of pancreatic islets increased, causing the plasma insulin concentration to double in DMSe mice compared with that in DMCtrl mice.
Project description:Dyslipidemia is a significant risk factor for progression of diabetic kidney disease (DKD). To identify individual lipids and lipid networks that may be involved in DKD progression, we performed untargeted lipidomic analysis of kidney cortex tissue from diabetic db/db and db/db eNOS-/- mice along with nondiabetic littermate controls. A subset of mice were treated with the renin-angiotensin system (RAS) inhibitors, lisinopril and losartan, which improves the DKD phenotype in the db/db eNOS-/- mouse model. Of the three independent variables in this study, diabetes had the largest impact on overall lipid levels in the kidney cortex, while eNOS expression and RAS inhibition had smaller impacts on kidney lipid levels. Kidney lipid network architecture, particularly of networks involving glycerolipids such as triacylglycerols, was substantially disrupted by worsening kidney disease in the db/db eNOS-/- mice compared to the db/db mice, a feature that was reversed with RAS inhibition. This was associated with decreased expression of the stearoyl-CoA desaturases, Scd1 and Scd2, with RAS inhibition. In addition to the known salutary effect of RAS inhibition on DKD progression, our results suggest a previously unrecognized role for RAS inhibition on the kidney triacylglycerol lipid metabolic network. Keywords: Dyslipidemia is a significant risk factor for progression of diabetic kidney disease (DKD). To identify individual lipids and lipid networks that may be involved in DKD progression, we performed untargeted lipidomic analysis of kidney cortex tissue from diabetic db/db and db/db eNOS-/- mice along with non-diabetic littermate controls. A subset of mice were treated with the renin-angiotensin system (RAS) inhibitors, lisinopril and losartan, which improves the DKD phenotype in the db/db eNOS-/- mouse model. Of the three independent variables in this study, diabetes had the largest impact on overall lipid levels in the kidney cortex, while eNOS expression and RAS inhibition had smaller impacts on kidney lipid levels. Kidney lipid network architecture, particularly of networks involving glycerolipids such as triacylglycerols, was substantially disrupted by worsening kidney disease in the db/db eNOS-/- mice compared to the db/db mice, a feature that was reversed with RAS inhibition. This was associated with decreased expression of the stearoyl-CoA desaturases, Scd1 and Scd2, with RAS inhibition. In addition to the known salutary effect of RAS inhibition on DKD progression, our results suggest a previously unrecognized role for RAS inhibition on the kidney triacylglycerol lipid metabolic network.
Project description:Gene expression of liver tissue from db/db untreated (6x replicates) and db/db treated with 5mg/kg of 3c7.v44 mAb (6x replicates). Anti-GCGR antibody treatment in db/db mice: fig 2b in Solloway et al.
Project description:Diabetic retinopathy is one of the leading causes of blindness in diabetic patients. Emerging evidence suggests that retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy, but the underlying causes of neuronal loss are unknown. To unravel potential mechanisms underlying early retinal neurodegeneration in diabetic retinopathy, a gene expression profiling study was undertaken to compare the gene expression in retinas of 8-week db/db diabetic mice with that of lean non-diabetic littermates. Retinas were obtained from 8-week db/db diabetic mice and age-matched lean non-diabetic controls. Total RNA was extracted and processed for being hybridized onto affymetrix DNA microarrays.
Project description:Diabetic nephropathy(DN) is a common diabetic microvascular complication, the underlying mechanisms involved in DN remain to be elucidated. We used microarrays to explore the global profile of gene expression for better understanding the molecular mechanism of diabetic nephropathy in type 2 diabetic db/db mice.