Organotpyic Human Epithelial Neoplasia
Ontology highlight
ABSTRACT: Refined cancer models are required to assess the burgeoning number of potential targets for cancer therapeutics within a rapid and clinically relevant context. Here we utilize tumor-associated genetic pathways to transform primary human epithelial cells from epidermis, oropharynx, esophagus, and cervix into genetically defined tumors within an entirely human 3-dimensional (3-D) tissue environment incorporating cell-populated stroma and intact basement membrane (BM). These engineered organotypic tissues recapitulated natural features of tumor progression, including epithelial invasion through the BM, a complex process critically required for biologic malignancy in 90% of human cancers. Invasion was rapid, and potentiated by stromal cells. Oncogenic signals in 3-D tissue, but not 2-D culture, resembled gene expression profiles from spontaneous human cancers. Screening well-characterized signaling pathway inhibitors in 3-D organotypic neoplasia helped distil a clinically faithful cancer gene signature. Multi-tissue 3-D human tissue cancer models may provide an efficient and relevant complement to current approaches to characterize cancer progression.
ORGANISM(S): Homo sapiens
PROVIDER: GSE22573 | GEO | 2010/10/15
SECONDARY ACCESSION(S): PRJNA128421
REPOSITORIES: GEO
ACCESS DATA