Identification of the mesenchymal signals regulating embryonic mammary gland development
Ontology highlight
ABSTRACT: The development of branched organs like mammary and salivary glands is regulated by tissue interactions between the epithelial and mesenchymal tissues. Mammary gland consists of a branched epithelial ductal network embedded in a mammary specific mesenchyme. In order to uncover the molecular mechanisms regulating embryonic mammary gland development, we compared the transcriptomes of mesenchymes from different development stages and tissues by RNA-sequencing
Project description:Although mesenchyme is essential for inducing the epithelium of ectodermal organs, its precise role in organ-specific epithelial fate determination remains poorly understood. To elucidate roles of tissue interactions in cellular differentiation, we performed single cell RNA sequencing and imaging analyses of recombined tissues in which embryonic mouse salivary gland mesenchyme and epithelium were switched ex vivo. We found partial induction of molecules that define gland-specific acinar and myoepithelial cells in recombined salivary epithelium. Parotid epithelium (serous gland) recombined with submandibular mesenchyme (mixed serous-mucous, but predominantly mucous gland) began to express mucous acinar genes not intrinsic to the parotid gland. While myoepithelial cells do not normally line parotid acini, newly induced myoepithelial cells densely populated recombined parotid acini. However, mucous acinar and myoepithelial markers continued to be expressed in submandibular epithelial cells recombined with parotid mesenchyme. Consequently, some epithelial cells appeared to be plastic, such that their fate could still be altered in response to mesenchymal signaling, whereas other epithelial cells appeared to be already committed to a specific fate. We also discovered evidence for bidirectional induction: transcriptional changes were observed not only in the epithelium but also in the mesenchyme after heterotypic tissue recombination. For example, parotid epithelium induced the expression of muscle-related genes in submandibular fibroblasts that began to mimic parotid fibroblast gene expression. These studies provide the first comprehensive unbiased molecular characterization of tissue recombination approaches exploring the regulation of cell fate.
Project description:Although mesenchyme is essential for inducing the epithelium of ectodermal organs, its precise role in organ-specific epithelial fate determination remains poorly understood. To elucidate roles of tissue interactions in cellular differentiation, we performed single cell RNA sequencing and imaging analyses of recombined tissues in which embryonic mouse salivary gland mesenchyme and epithelium were switched ex vivo. We found partial induction of molecules that define gland-specific acinar and myoepithelial cells in recombined salivary epithelium. Parotid epithelium (serous gland) recombined with submandibular mesenchyme (mixed serous-mucous, but predominantly mucous gland) began to express mucous acinar genes not intrinsic to the parotid gland. While myoepithelial cells do not normally line parotid acini, newly induced myoepithelial cells densely populated recombined parotid acini. However, mucous acinar and myoepithelial markers continued to be expressed in submandibular epithelial cells recombined with parotid mesenchyme. Consequently, some epithelial cells appeared to be plastic, such that their fate could still be altered in response to mesenchymal signaling, whereas other epithelial cells appeared to be already committed to a specific fate. We also discovered evidence for bidirectional induction: transcriptional changes were observed not only in the epithelium but also in the mesenchyme after heterotypic tissue recombination. For example, parotid epithelium induced the expression of muscle-related genes in submandibular fibroblasts that began to mimic parotid fibroblast gene expression. These studies provide the first comprehensive unbiased molecular characterization of tissue recombination approaches exploring the regulation of cell fate.
Project description:Branching morphogenesis is a basic way of the kinds of complex organs’ development including lungs, kidneys, thyroid glands and salivary glands.1 Submandibular gland (SMG) development is a classic model to reveal the mechanism of branching morphogenesis and it also provides novel approaches to tissue engineering for salivary glands regenerating or for creating artificial salivary glands.And for murine salivary glands’ development, two main components are formed, epithelial and mesenchyme. The elongation and branch of epithelial make up the main process of its development which supported by mesenchymal secretion.This processes are controlled by many factors like growth factors, hormones and miRNAs etc.567 All these factors play different roles in the branching morphogenesis of mouse salivary glands. Transforming growth factor β1 (TGF-β1) is a pivotal factor of them and it has a huge impact on SMG development through its action on the mesenchyme. We used microarrays to detail the global programme of gene expression during the branching morphogenesis and identified distinct classes of up/down-regulated genes during this process.
Project description:The mammary primordium represents the earliest evidence of commitment to the mammary lineage. The primordium forms via inductive tissue interactions between its constitutive tissues, the mesenchyme and epithelium. Here, we describe an analysis of the transcriptome of the mammary bud epithelium and its associated mesenchyme, two distinct cellular compartments that comprise the mammary primordium. Using network analysis, we found candidate mediators of mammary cell fate, differentiation and progenitor cell function that signal from mammary lineage inception during embryogenesis through postnatal development. Genetic features of mammary primordial cells overlapping with human breast progenitor cells identified potential regulators of key progenitor cell functions conserved across species. These results provide new insights into genetic regulatory mechanisms of mammary and in particular novel regulators of stromal-epithelial communications.
Project description:Mammary gland branching morphogenesis is thought to relie on the mobilization of the membrane-anchored matrix metalloproteinase, Mmp14/MT1-MMP, to drive mammary epithelial invasion by remodeling the extracellular matrix and triggering associated signaling cascades. However, the roles that this proteinase plays during postnatal mammary gland development in vivo remain undefined. A mammary gland branching program that occurs during the first 4 weeks of postnatal mouse development, in tandem with recently developed Mmp14-floxed mice and MMTV-Cre transgenics that express Cre recombinase throughout the mammary epithelial cell compartment, were used to characterize the impact of deleting epithelial cell Mmp14 on mammary gland morphogenesis. Transcriptome profiling of mammary epithelial cells was used to investigate the functional roles of MT1-MMP in the postnatal mammary epithelial cell compartment in an unbiased fashion
Project description:Mammary gland branching morphogenesis is thought to relie on the mobilization of the membrane-anchored matrix metalloproteinase, Mmp14/MT1-MMP, to drive mammary epithelial invasion by remodeling the extracellular matrix and triggering associated signaling cascades. However, the roles that this proteinase plays during postnatal mammary gland development in vivo remain undefined. A mammary gland branching program that occurs during the first 4 weeks of postnatal mouse development, in tandem with recently developed Mmp14-floxed mice and MMTV-Cre transgenics that express Cre recombinase throughout the mammary epithelial cell compartment, were used to characterize the impact of deleting epithelial cell Mmp14 on mammary gland morphogenesis. Transcriptome profiling of mammary epithelial cells was used to investigate the effects of MMTV-Cre expression on the postnatal mammary epithelial cell compartment in an unbiased fashion
Project description:P190B RhoGAP is required for mammary gland development, and its overexpression disrupts mammary gland branching morphogenesis. To better understand the mechanisms by which p190B regulates mammary gland development we performed gene expression microarray analysis on mammary epithelial cells isolated from p190B overexpressing transgenic mice compared to control mice.
Project description:Comparisons between whole animal and epidermis with attached muscle, salivary gland, wing disc, midgut, and central nervous system tissues at approximately 18 hours before pupariation. Keywords = Drosophila, ecdysone, network, genomic, microarray, organogenesis, EcR, midgut, central nervous system, salivary gland, epidermis, imaginal disc, development Keywords: other
Project description:During kidney development segmented epithelia of the nephron derive from progenitor cells in the metanephric mesenchyme after induction by secreted molecules from the ureteric bud. We have identified three distinct inductive activities from a ureteric bud cell line. These include leukemia inhibitory factor (LIF), neutrophil gelatinase-associated lipocalin (NGAL) and an active fraction currently referred to as ANX. Each of these activities induces segmented nephron epithelia in isolated rat metanephric mesenchyme over a time period of 7 days. This study was designed to characterize the temporal sequence of gene expression in the course of the conversion process induced by each of the distinct inducers. Experiment Overall Design: Metanephric mesenchymes were microdissected from rat E13.5 embryos. Mesenchymes were cultured on transwells in the presence of either LIF, NGAL or the ANX fraction and RNA was harvested after 1, 2, 3, 4, 5, and 7 days for RNA extraction. Freshly dissected mesenchymes and mesenchymes cultured in the absence of inducers for 1 and 2 days, respectively, served as controls. Each condition was analyzed in duplicate (biological replicates). Biotinylated cRNA was prepared and hybridized to Affymetrix Rat Genome 230 2.0 Microarrays. Expression values were obtained by robust multichip analysis.
Project description:Mammary epithelial cells (MECs) have strong secretory function, which is an important target cell for studying mammary gland bioreactor. It is also a unique cell with lactation function in mammary gland. It can be used to study cell biological characteristics and molecular biological mechanism in the process of mammary gland growth, development and lactation. At present, mammary epithelial cells are obtained from mammary tissue, and the extraction of tissue block involves surgical anesthesia, which may lead to breast tissue injury and infection. This study aimed to describe the process of isolating and culturing goat mammary epithelial cells (GMECs) from goat milk, and to identify the biological characteristics of GMECs. Our study laid a foundation for the study of the regulation mechanism of mammary gland development and lactation, the improvement of milk quality, the increase of milk production and the establishment of mammary gland bioreactor.