Project description:Mechanistic study on the differential responses of the two hippocampal adjoining regions, i.e., CA1 and CA3, to elevated oxidative stress. Keywords: Time course stress response study
Project description:We examined the transcriptional changes observable under oxidative stress caused by menadione in Emericella nidulans. Keywords: time-course
Project description:Oxidative stress caused by Menadione or Hydrogen peroxide in synchronized Saccharomyces cerevisiae cultures. Alpha factor synchronized cultures (0.2-0.4 OD), treated at the beginning of S phase (25 min after release from G1 arrest) with either 2 mM Menadione (MD) or 0.24 mM Hydrogen peroxide (HP), show cell cycle effects. Cells treated with MD arrested at G1. Cells treated with HP delayed at S and then, after removal of HP at 135 minutes , continued the cell cycle, only to arrest at G2/M. Growth was carried out in 30C with shaking (295 rpm). Two time course experiments were performed with each oxidative stress agent, designated as H2O2 and H2O2_II, MD and MD_II. Keywords = oxidative stress Keywords = menadione Keywords = hydrogen peroxide Keywords = time course Keywords = cell cycle Keywords = yeast
Project description:Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalnace between reactive oxygen species and other oxidants and the capacity of antioxidant defense systems to remove them. The budding yeast S. cerevisiae has been the major eukaryotic model for studies of response to oxidative stress. We used microarrays to study the genome-wide temporal response of the yeast S. cerevisiae to oxidative stress induced by cumene hydroperoxide. Keywords: time course
Project description:Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalnace between reactive oxygen species and other oxidants and the capacity of antioxidant defense systems to remove them. The budding yeast S. cerevisiae has been the major eukaryotic model for studies of response to oxidative stress. We used microarrays to study the genome-wide temporal response of the yeast S. cerevisiae to oxidative stress induced by cumene hydroperoxide. Keywords: time course
Project description:Oxidative stress caused by Menadione or Hydrogen peroxide in synchronized Saccharomyces cerevisiae cultures. Alpha factor synchronized cultures (0.2-0.4 OD), treated at the beginning of S phase (25 min after release from G1 arrest) with either 2 mM Menadione (MD) or 0.24 mM Hydrogen peroxide (HP), show cell cycle effects. Cells treated with MD arrested at G1. Cells treated with HP delayed at S and then, after removal of HP at 135 minutes , continued the cell cycle, only to arrest at G2/M. Growth was carried out in 30C with shaking (295 rpm). Two time course experiments were performed with each oxidative stress agent, designated as H2O2 and H2O2_II, MD and MD_II. Keywords = oxidative stress Keywords = menadione Keywords = hydrogen peroxide Keywords = time course Keywords = cell cycle Keywords = yeast Keywords: other
Project description:Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalnace between reactive oxygen species and other oxidants and the capacity of antioxidant defense systems to remove them. The budding yeast S. cerevisiae has been the major eukaryotic model for studies of response to oxidative stress. We used microarrays to study the genome-wide temporal response of the yeast S. cerevisiae to oxidative stress induced by cumene hydroperoxide. Keywords: time course The effects of oxidative stress induced by CHP on the transcriptional profile of S. cerevisiae was studied from a dynamical perspective. Yeast cultures were grown in controlled batch conditions, in 1 L fermentors. Three replicate cultures in mid-exponential phase were exposed to 0.19 mM CHP, while three non-treated cultures were used as controls. Samples were collected at t=0 (immediately before adding CHP) and at 3, 6, 12 and 20 min after adding the oxidant. Samples were processed for RNA extraction and profiled using Affymetrix Yeast Genome S98 arrays.