Project description:To gain mechanistic insights into the molecular changes of Caenorhabditis briggsae between the two developmental stages: embryo and larvae
Project description:Transcriptional profiling of purple sea urchin (Strongylocentrotus purpuratus) larvae cultured under three different seawater CO2 concentrations 400, 800, 1200 M-BM-5atm. The goal was to determine the effects of CO2, an important climate change variable, on global gene expression Larvae were cultured under three different seawater CO2 concentrations 400, 800, 1200 M-BM-5atm, each with four replicate cultures, and sampled at two developmental stages (gastrula and pluteus)
Project description:Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honeybee health worldwide. The present study investigates the transcriptional response of this Gram-positive, endospore-forming bacterium to bodily fluids from honeybee larvae. Four different conditions were evaluated with a loop design: sampling of in vitro grown P. larvae cultures one or four hours after addition of larval fluids or BHIT-broth (C1, T1, C4, T4).
Project description:Of the species of Trichinella spp. that may affect human health, Trichinella britovi is the second most common. As an early diagnosis of trichinellosis is crucial for effective treatment, it is important to identify sensitive, specific and common antigens of adult T. britovi worms and muscle larvae. The present study was undertaken to uncover the stage-specific and common proteins of T. britovi that hold promise for specific diagnostics. To that end, the somatic extracts obtained from two developmental stages, muscle larvae (ML) and adult worms (Ad), were separated using two-dimensional gel electrophoresis (2DE) coupled with immunoblot analysis. The positively-visualized protein spots specific for each stage were identified through liquid chromatography-tandem mass spectrometry (LC-LC/MS). A total of 272 spots were detected in the proteome of T. britovi adult worms (Ad) and 261 in the muscle larvae (ML). The somatic extracts from Ad and ML were specifically recognized by pig T. britovi-infected swine sera at 10 days post infection (dpi) and 60 dpi, with a total of 70 prominent protein spots. According to immunoblotting patterns and LC-MS/MS results, the immunogenic spots recognized by different pig T. britovi-infected sera were divided into three groups for the two developmental stages: adult stage-specific proteins, muscle larvae stage-specific proteins, and common proteins. Forty-five Ad proteins (29 Ad-specific and 16 common) and thirteen ML proteins (nine ML-specific and four common) cross-reacted with sera at 10 dpi. Many of the proteins identified in Ad (myosin-4, myosin light chain kinase, paramyosin, intermediate filament protein B, actin-depolymerizing factor 1, and calreticulin) are involved in structural and motor activity. Among the most abundant proteins identified in ML were 14-3-3 protein zeta, actin-5C, ATP synthase subunit d, deoxyribonuclease-2-alpha, poly-cysteine and histide-tailed protein, enolase, V-type proton ATPase catalytic and serine protease 30. Heat shock protein, intermediate filament protein ifa-1 and intermediate filament protein B were identified in both proteomes. The current study represents the first immunoproteomic identification of the antigenic proteins of adult worm and muscle larvae of T. britovi. These results provide a valuable basis for the development of diagnostic methods. The identification of common components among two developmental stages of T. britovi may be useful in the preparation of parasitic antigens in recombinant forms for diagnostic use.
Project description:homozygous Pdp1-p205 larvae are severely growth delayed and die before pupation, whereas Pdp1-p205 heterozygous larvae and adults display no apparent phenotype. We compared the transcriptional profiles of heterozygous and homozygous Pdp1-p205.
Project description:the growth of the mosquito population is directly related to the spread of malaria, the Four Stage Life Cycle is incorporated to model the effects of climate change and interspecies competition within the mosquito life cycle stages of Egg, Larvae, and Pupae.
Project description:This study elucidated the role of DHA-modulated genes in the development and growth of bluefin tuna (Thunnus thynnus) larvae ingesting increasing levels of DHA in their rotifer prey. The effect of feeding low, medium, and high rotifer (Brachionus rotundiformis) DHA levels (2.0, 3.6 and 10.9 mg DHA g-1 DW, respectively) was tested on 2-15 days post hatching (dph) bluefin tuna larvae. Larval DHA content markedly (P < 0.05) increased in a DHA dose-dependent manner (1.5, 3.9, 6.1 mg DHA g-1 DW larva, respectively), that was positively correlated with larval prey consumption, and growth (P < 0.05). Gene ontology enrichment analyses of DEGs demonstrated dietary DHA significantly (P < 0.05) affected different genes and biological processes at different developmental ages. The number of DHA up-regulated DEGs was highest in 10 dph larvae (408), compared to 5 (11) and 15 dph fish (34), and were mainly involved in neural and synaptic development in the brain and spinal cord. In contrast, DHA in older 15 dph larvae elicited fewer DEGs but played critical roles over a wider range of developing organs. The emerging picture underscores the importance of DHA-modulated gene expression as a driving force in bluefin tuna larval development and growth.
Project description:To assess how larvae of different ages vary in their responses to different settlement cues, we induced individual Amphimedon queenslandica larvae with one of three different settlement cues at 1.5, 3, 5, and 8 hours post emergence (hpe) from the adult sponge. The settlement cues were (1) the articulated coralline algae Amphiroa fragilissima, (2) the crustose coralline algae Mesophyllum sp., and (3) the filtered seawater (FSW) negative control. We used CEL-Seq2, an RNA-Sequencing approach (Hashimshony et al., 2016), to generate transcriptome data for a total of 144 individuals (larvae and settled post-larvae) at 2 hours post induction (hpi) to the different settlement cues.