An ATP-sensitive phosphoketolase regulates carbon fixation in cyanobacteria
Ontology highlight
ABSTRACT: Regulation of CO2 fixation in cyanobacteria is important both for the organism and the global carbon balance. Here we show that phosphoketolase in Synechococcus elongatus PCC7942 (SeXPK) possesses a distinct ATP sensing mechanism, which upon ATP drops, allows SeXPK to divert precursors of the RuBisCO substrate away from the Calvin-Benson-Bassham (CBB) cycle. Deleting the SeXPK gene increased CO2 fixation particularly during light-dark transitions. In high-density cultures, the xpk strain showed a 60% increase in carbon fixation, and unexpectedly resulted in sucrose secretion without any pathway engineering. Using cryo-EM analysis, we discovered that these functions were enabled by a unique allosteric regulatory site involving two subunits jointly binding two ATP, which constantly suppresses the activity of SeXPK until the ATP level drops. This magnesium-independent ATP allosteric site is present in many species across all three domains of life, where it may also play important regulatory functions.
ORGANISM(S): Synechococcus elongatus
PROVIDER: GSE227397 | GEO | 2023/08/08
REPOSITORIES: GEO
ACCESS DATA