Other

Dataset Information

0

Genome-wide profiling of DNA repair proteins identifies higher-order coordination in single cells


ABSTRACT: Accurate repair of DNA damage is critical for maintenance of genomic integrity and cellular viability. Because damage occurs non-uniformly across the genome, single-cell resolution is required for proper interrogation, but sensitive detection has remained challenging. Here, we present a comprehensive analysis of repair protein localization in single cells using DamID and ChIC sequencing techniques. This study reports genome-wide binding profiles in response to DNA double-strand breaks induced by AsiSI, and explores variability in genomic damage locations and associated repair features in the context of spatial genome organization. By unbiasedly detecting repair factor localization, we find that repair proteins often occupy entire topologically associating domains, mimicking variability in chromatin loop anchoring. Moreover, we demonstrate the formation of multi-way chromatin hubs in response to DNA damage. Notably, larger hubs show increased coordination of repair protein binding, suggesting a preference for cooperative repair mechanisms. Together, our work offers new insights into the heterogeneous processes underlying genome stability in single cells.

ORGANISM(S): Homo sapiens

PROVIDER: GSE229874 | GEO | 2024/04/17

REPOSITORIES: GEO

Similar Datasets

2019-02-26 | PXD012045 | Pride
2014-07-06 | E-GEOD-55605 | biostudies-arrayexpress
2013-02-04 | E-GEOD-43504 | biostudies-arrayexpress
2024-09-16 | GSE255341 | GEO
2024-09-16 | GSE255340 | GEO
2024-09-17 | GSE256233 | GEO
2024-09-16 | GSE255342 | GEO
2018-02-18 | GSE97648 | GEO
2013-02-04 | GSE43504 | GEO
2015-09-30 | E-MTAB-2992 | biostudies-arrayexpress