MYC family amplification dictates sensitivity to BET bromodomain protein inhibitor Mivebresib (ABBV-075) in small cell lung cancer
Ontology highlight
ABSTRACT: Small-cell lung cancer (SCLC) accounts for nearly 15% of all lung cancers. Although patients respond to first line therapy readily, rapid relapse is inevitable with few treatment options in the second line setting. Here, we describe SCLC cell lines harboring amplification of MYC and MYCN, but not MYCL1 nor non-amplified MYC cell lines, exhibit superior sensitivity to treatment with the pan-BET bromodomain protein inhibitor Mivebresib (ABBV-075). Silencing MYC and MYCN partially rescued SCLC cell lines harboring these respective amplifications from the anti-proliferative effects of mivebresib. Furthermore, the activity of mivebresib in SCLC cell lines occurs primarily through BRD2, rather than BRD4. Further characterization of genome-wide binding of MYC, MYCN, and MYCL1 uncovered unique enhancer and epigenetic preferences. Our study suggests that chromatin landscapes could establish cell states with unique gene expression programs, conveying sensitivity to epigenetic inhibitors such as mivebresib.
Project description:Small cell lung cancer (SCLC) is an aggressive cancer often diagnosed only after it has metastasized to distant sites (Meuwissen and Berns 2005; Cooper and Spiro 2006). Despite the need to better understand this disease, SCLC remains poorly characterized at the molecular and genomic levels (Forgacs et al. 2001; Pleasance et al. 2010). Using a genetically-engineered mouse model of SCLC driven by conditional deletion of Trp53 and Rb1 in the lung (Jonkers et al. 2001; Vooijs et al. 2002; Meuwissen et al. 2003; Sage et al. 2003), we identified several frequent, high-magnitude focal DNA copy number alterations in SCLC. We uncovered amplification of a novel, oncogenic transcription factor, Nuclear Factor I/B (Nfib) in the mouse SCLC model and in human SCLC. Functional studies indicate that NFIB regulates cell viability and proliferation during transformation. Gene expression analysis of two replicates each of two independent mSCLC cell lines (3583T3 and 3151T4) stably expressing Nfib, Mycl1 or both Nfib and Mycl1
Project description:Small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC) are high-grade pulmonary neuroendocrine tumors. The neural basic helix-loop-helix (bHLH) transcription factors ASCL1 and NEUROD1 have been shown to play crucial roles in promoting the malignant behavior and survival of human SCLC cell lines. In this study, we find ASCL1 and NEUROD1 identify distinct neuroendocrine tumors, bind distinct genomic loci, and regulate mostly distinct genes. ASCL1 and NEUROD1 are often bound in super-enhancers that are associated with highly expressed genes in their respective SCLC cell lines suggesting different cell lineage of origin for these tumors. ASCL1 targets oncogenic genes such as MYCL1, RET, and NFIB, while NEUROD1 targets the oncogenic gene MYC. Although ASCL1 and NEUROD1 regulate different genes, many of these gene targets commonly contribute to neuroendocrine and cell migration function. ASCL1 in particular also regulates genes in the NOTCH pathway and genes important in cell-cycle dynamics. Finally, we demonstrate ASCL1 but not NEUROD1 is required for SCLC and LCNEC tumor formation in current in vivo genetic mouse models of pulmonary neuroendocrine tumors RNA-seq analysis performed on two ASCL1high and two NEUROD1high human SCLC cell lines to identify gene expression patterns in these cells. Also, we performed RNA-seq in mouse neuroendocrine lung tumors obtained from Trp53;Rb1;Rbl2 triple knockout model mice treated with Adeno-CMVCRE intratracheally.
Project description:Small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC) are high-grade pulmonary neuroendocrine tumors. The neural basic helix-loop-helix (bHLH) transcription factors ASCL1 and NEUROD1 have been shown to play crucial roles in promoting the malignant behavior and survival of human SCLC cell lines. In this study, we find ASCL1 and NEUROD1 identify distinct neuroendocrine tumors, bind distinct genomic loci, and regulate mostly distinct genes. ASCL1 and NEUROD1 are often bound in super-enhancers that are associated with highly expressed genes in their respective SCLC cell lines suggesting different cell lineage of origin for these tumors. ASCL1 targets oncogenic genes such as MYCL1, RET, and NFIB, while NEUROD1 targets the oncogenic gene MYC. Although ASCL1 and NEUROD1 regulate different genes, many of these gene targets commonly contribute to neuroendocrine and cell migration function. ASCL1 in particular also regulates genes in the NOTCH pathway and genes important in cell-cycle dynamics. Finally, we demonstrate ASCL1 but not NEUROD1 is required for SCLC and LCNEC tumor formation in current in vivo genetic mouse models of pulmonary neuroendocrine tumors ChIP-seq analysis performed on three ASCL1high and two NEUROD1high human SCLC cell lines to identify ASCL1 and/or NEUROD1 binding sites in these two types of cells. Also, we performed ChIP-seq for Ascl1 binding sites in mouse neuroendocrine lung tumors obtained from Trp53;Rb1;Rbl2 triple knockout model mice treated with Adeno-CMVCRE intratracheally.
Project description:Small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC) are high-grade pulmonary neuroendocrine tumors. The neural basic helix-loop-helix (bHLH) transcription factors ASCL1 and NEUROD1 have been shown to play crucial roles in promoting the malignant behavior and survival of human SCLC cell lines. In this study, we find ASCL1 and NEUROD1 identify distinct neuroendocrine tumors, bind distinct genomic loci, and regulate mostly distinct genes. ASCL1 and NEUROD1 are often bound in super-enhancers that are associated with highly expressed genes in their respective SCLC cell lines suggesting different cell lineage of origin for these tumors. ASCL1 targets oncogenic genes such as MYCL1, RET, and NFIB, while NEUROD1 targets the oncogenic gene MYC. Although ASCL1 and NEUROD1 regulate different genes, many of these gene targets commonly contribute to neuroendocrine and cell migration function. ASCL1 in particular also regulates genes in the NOTCH pathway and genes important in cell-cycle dynamics. Finally, we demonstrate ASCL1 but not NEUROD1 is required for SCLC and LCNEC tumor formation in current in vivo genetic mouse models of pulmonary neuroendocrine tumors
Project description:Small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC) are high-grade pulmonary neuroendocrine tumors. The neural basic helix-loop-helix (bHLH) transcription factors ASCL1 and NEUROD1 have been shown to play crucial roles in promoting the malignant behavior and survival of human SCLC cell lines. In this study, we find ASCL1 and NEUROD1 identify distinct neuroendocrine tumors, bind distinct genomic loci, and regulate mostly distinct genes. ASCL1 and NEUROD1 are often bound in super-enhancers that are associated with highly expressed genes in their respective SCLC cell lines suggesting different cell lineage of origin for these tumors. ASCL1 targets oncogenic genes such as MYCL1, RET, and NFIB, while NEUROD1 targets the oncogenic gene MYC. Although ASCL1 and NEUROD1 regulate different genes, many of these gene targets commonly contribute to neuroendocrine and cell migration function. ASCL1 in particular also regulates genes in the NOTCH pathway and genes important in cell-cycle dynamics. Finally, we demonstrate ASCL1 but not NEUROD1 is required for SCLC and LCNEC tumor formation in current in vivo genetic mouse models of pulmonary neuroendocrine tumors
Project description:In the present study we investigated the structure of MYCN amplifications, examples of both dmin and hsr, in eight neuroblastoma (NB) and two small cell lung carcinoma (SCLC) cell lines. Ten cell lines were analyzed for gene amplification: STA-NB3 (NB), STA-NB4 (NB), STA-NB8 (NB), STA-NB10DM (NB), STA-NB10HSR (NB), STA-NB13 (NB), STA-NB15 (NB), SK-N-BE (NB), GLC8 (SCLC), GLC14 (SCLC). NimbleGen human reference sample was used as reference DNA.
Project description:To identify genes that are modulated by BET inhibitors in blood, we determined global gene expression changes in ABBV-075-treated human PBMC samples
Project description:To identify genes that are modulated by BET inhibitors in blood, we determined global gene expression changes in ABBV-075-treated mouse whole blood samples
Project description:In the present study we investigated the structure of MYCN amplifications, examples of both dmin and hsr, in eight neuroblastoma (NB) and two small cell lung carcinoma (SCLC) cell lines.