Transcriptomics

Dataset Information

0

O6-Methylguanine DNA Methyltransferase Regulates Beta-glucan Trained Immunity of Macrophages


ABSTRACT: Trained immunity is the heightened state of innate immune memory that enhances immune response resulting in nonspecific protection. Epigenetic changes and metabolic reprogramming are critical steps that regulate trained immunity. In this study, we reported the involvement of O6-methylguanine DNA methyltransferase (MGMT), a DNA repair enzyme of lesion induced by alkylating agents, in regulation the trained immunity induced by β-glucan (BG). Pharmacological inhibition or silencing of MGMT expression altered LPS stimulated pro-inflammatory cytokine productions in BG-trained bone marrow derived macrophages (BMMs). Targeted deletion of Mgmt in BMMs resulted in reduction of the trained responses both in vitro and in vivo models. The transcriptomic analysis revealed that the dampening trained immunity in MGMT KO BMMs is partially mediated by ATM/FXR/AMPK axis affecting the MAPK/mTOR/HIF1α pathways and the reduction in glycolysis function. Taken together, a failure to resolve a DNA damage may have consequences for innate immune memory.

ORGANISM(S): Mus musculus

PROVIDER: GSE231419 | GEO | 2024/01/23

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2016-11-01 | GSE86940 | GEO
2023-12-12 | GSE249155 | GEO
2024-10-30 | GSE279423 | GEO
2017-12-15 | GSE108098 | GEO
| PRJNA965794 | ENA
2013-01-10 | E-GEOD-26600 | biostudies-arrayexpress
2022-04-01 | PXD028683 | Pride
2023-06-26 | GSE212282 | GEO
2018-07-13 | GSE113816 | GEO
2013-01-10 | GSE26600 | GEO