Nf1 Deficiency Increases Mammary Collagen Deposition and Restricts Adipocyte Differentiation Before Tumor Formation
Ontology highlight
ABSTRACT: BACKGROUND: The NF1 tumor suppressor gene is the main negative regulator of the RAS pathway and is frequently mutated in various cancers. Women with Neurofibromatosis Type I (NF1) – a tumor predisposition syndrome caused by a germline NF1 mutation – have an increased risk of developing aggressive breast cancer with poorer prognosis. The mechanisms by which NF1 mutation leads to breast cancer tumorigenesis are not well understood. Therefore, the objective of this work was to identify stromal alterations before tumor formation that result in the increased risk and poorer outcome seen among NF1 patients with breast cancer. METHODS: To accurately model the germline monoallelic NF1 mutations in NF1 patients, we utilized an Nf1-deficient rat model with accelerated mammary development and develops highly penetrant breast cancer. RESULTS: We identified increased collagen content in Nf1-deficient rat mammary glands before tumor formation that correlated with age of tumor onset. Additionally, gene expression analysis revealed that Nf1-deficient rat mammary mature adipocytes have increased collagen expression and shifted to a fibroblast and preadipocyte expression profile. This alteration in lineage commitment was also observed with in vitro differentiation but flow cytometry analysis did not show a change mammary adipose-derived mesenchymal stem cell abundance. CONCLUSION: Collectively, these studies uncovered the previously undescribed role of Nf1 in mammary collagen deposition and regulating adipocyte differentiation. In addition to unraveling the mechanism of tumor formation, further investigation of adipocytes and collagen modifications in preneoplastic mammary gland will create a foundation for developing early detection strategies of breast cancer among NF1 patients.
Project description:Breast cancer is the most prevalent cancer in women, and most cases are believed to have a sporadic, rather than heritable basis. Therefore, a major challenge in cancer research is to determine the underlying genomic alterations leading to carcinogenesis and malignancy, and then use this information for personalized therapies. Genomic studies of human cancers that aim to identify causative mutations are complicated by the prevalence of passenger mutations, genetic heterogeneity, and the diversity of breast cancer etiologies and tumor subtypes. Mouse cancer models are powerful for untangling the genomic basis of cancers because genetic and phenotypic variation can be eliminated or controlled. To identify genes contributing to mammary tumorigenesis, we exploited the C3H-Mcm4Chaos3/Chaos3 (“Chaos3”) mouse model that, by virtue of bearing a defective DNA replicative helicase subunit that causes elevated genomic instability (GIN), sustains somatic alterations ultimately causing mammary adenocarcinomas. Genomic analysis of Chaos3 mammary tumors revealed recurrent copy number alterations (CNAs) of specific genomic regions, most notably deletion of the Neurofibromin 1 (Nf1) tumor suppressor gene in all cases. NF1, a negative regulator of RAS, is traditionally recognized for its role in driving the development of neurofibromas in the context of the human disease Neurofibromitosis but not breast cancer. We observed elevated RAS activation and increased sensitivity of both Chaos3 and human Nf1-mutated breast cancer lines to MAPK and/or PI3K/AKT pathway inhibitors. We also found striking overlap between Chaos3 CNAs and human breast cancer CNA data curated in public genomic databases, including Nf1 deletion. Together, our results indicate that spontaneous NF1 loss can drive breast cancer and suggests a potential therapeutic strategy in that subset of patients. reference x sample
Project description:Breast cancer is the most prevalent cancer in women, and most cases are believed to have a sporadic, rather than heritable basis. Therefore, a major challenge in cancer research is to determine the underlying genomic alterations leading to carcinogenesis and malignancy, and then use this information for personalized therapies. Genomic studies of human cancers that aim to identify causative mutations are complicated by the prevalence of passenger mutations, genetic heterogeneity, and the diversity of breast cancer etiologies and tumor subtypes. Mouse cancer models are powerful for untangling the genomic basis of cancers because genetic and phenotypic variation can be eliminated or controlled. To identify genes contributing to mammary tumorigenesis, we exploited the C3H-Mcm4Chaos3/Chaos3 (“Chaos3”) mouse model that, by virtue of bearing a defective DNA replicative helicase subunit that causes elevated genomic instability (GIN), sustains somatic alterations ultimately causing mammary adenocarcinomas. Genomic analysis of Chaos3 mammary tumors revealed recurrent copy number alterations (CNAs) of specific genomic regions, most notably deletion of the Neurofibromin 1 (Nf1) tumor suppressor gene in all cases. NF1, a negative regulator of RAS, is traditionally recognized for its role in driving the development of neurofibromas in the context of the human disease Neurofibromitosis but not breast cancer. We observed elevated RAS activation and increased sensitivity of both Chaos3 and human Nf1-mutated breast cancer lines to MAPK and/or PI3K/AKT pathway inhibitors. We also found striking overlap between Chaos3 CNAs and human breast cancer CNA data curated in public genomic databases, including Nf1 deletion. Together, our results indicate that spontaneous NF1 loss can drive breast cancer and suggests a potential therapeutic strategy in that subset of patients.
Project description:Rat mammary tumors induced by N-methyl-N-nitrosurea (NMU) and normal mammary gland Keywords = breast cancer Keywords = rat mammary tumor Keywords = NMU Keywords = animal model. Keywords: other
Project description:The progression of noninvasive ductal carcinoma in situ to invasive ductal carcinoma for patients with breast cancer results in a significantly poorer prognosis and is the precursor to metastatic disease. In this work, we have identified insulin-like growth factor–binding protein 2 (IGFBP2) as a potent adipocrine factor secreted by healthy breast adipocytes that acts as a barrier against invasive progression. In line with this role, adipocytes differentiated from patient-derived stromal cells were found to secrete IGFBP2, which significantly inhibited breast cancer invasion. This occurred through binding and sequestration of cancer-derived IGF-II. Moreover, depletion of IGF-II in invading cancer cells using small interfering RNAs or an IGF-II–neutralizing antibody ablated breast cancer invasion, highlighting the importance of IGF-II autocrine signaling for breast cancer invasive progression. Given the abundance of adipocytes in the healthy breast, this work exposes the important role they play in suppressing cancer progression and may help expound upon the link between increased mammary density and poorer prognosis.
Project description:Breast cancer is the most prevalent cancer in women 1, and most cases are believed to have a sporadic, rather than heritable basis 2. To identify breast cancer driver genes, we exploited the C3H-Mcm4Chaos3/Chaos3 (“Chaos3”) mouse model that, by virtue of bearing a defective DNA replicative helicase subunit that causes elevated genomic instability (GIN), sustains somatic alterations ultimately causing mammary adenocarcinomas 6. Array Comparative Genomic Hybridization (aCGH) analysis of Chaos3 mammary tumors revealed recurrent copy number alterations (CNAs), most notably deletion of the Neurofibromin 1 (Nf1) tumor suppressor gene in all cases. NF1, a negative regulator of RAS, is traditionally recognized for its role in driving the development of neurofibromas in the context of the human disease Neurofibromatosis Type 1, but not breast cancer. Genomic DNA from tumor and reference samples were hybridized to NimbleGen 3x720K mouse CGH arrays. Two reference samples were used independently. CNAs were visualized using Nimblegen, IGV, and KCsmart software 32. Select genes were validated via qPCR. Critical regions within each Chaos3 CNA were identified as the region with the greatest overlap across multiple Chaos3 tumors. Recurring Copy Number Variations (CNVs) for 12 Chaos3 tumors and 2 MMTV-Neu mammary tumors analyzed by aCGH are indicated. Samples analyzed are primary tumors except where indicated.
Project description:The v-Crk protein was originally isolated as the oncogene fusion product of the CT10 chicken retrovirus. Cellular homologues of v-Crk include Crk, which encodes two alternatively spliced proteins (CrkI and CrkII), and CrkL. Though CrkI/II proteins are elevated in several types of cancer, including breast, the question of whether these Crk adaptor proteins can promote breast cancer has not been addressed. We created a transgenic mouse model that allows the expression of CrkII through the hormonally responsive mouse mammary tumor virus promoter. During puberty, transgenic mice were found to have delayed ductal outgrowth, characterized by increased collagen surrounding the terminal end buds. In post-pubertal mice, precocious ductal branching was observed and associated with increased proliferation. Focal mammary tumors appeared in a subset of animals, with a latency of approximately 15 months. Mouse mammary tumor virus/CrkII tumors showed high levels of Crk protein as well as various cytokeratin markers characteristic of their respective tumor pathologies. This study demonstrates that the precise expression of CrkII is critical for integrating signals for ductal outgrowth and branching morphogenesis during mammary gland development. Furthermore, this study provides evidence for a potential role of CrkII in integrating signals for breast cancer progression in vivo, which has important implications for elevated CrkII observed in human cancer. Two T47D-CrkII samples vs two T47D samples.
Project description:Younger age and obesity increase the incidence and rates of metastasis of triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer. The tissue microenvironment, specifically the extracellular matrix (ECM), is known to promote tumor invasion and metastasis. We sought to characterize the effect of both age and obesity on the ECM of mammary fat pads. We used a diet-induced obesity (DIO) model where 10-week-old female mice were fed a high-fat diet (HFD) for 16 weeks or a control chow diet (CD) where time points were every 4 weeks to monitor age and obesity HFD progression. We isolated the mammary fat pads to characterize the ECM at each time point. Utilizing proteomics, we found that the early stages of obesity were sufficient to induce distinct differences in the ECM composition of mammary fat pads that promote TNBC cell invasion. ECM proteins previously implicated in driving TNBC invasion Collagen IV and Collagen VI, were enriched with weight gain. Together these data implicate ECM changes in the primary tumor microenvironment as mechanisms by which age and obesity contribute to breast cancer progression.
Project description:Type I, II, III and V collagens were commonly identified in human, pig, and mouse breast ECM. Mammary epithelial cells were able to form acini on certain types or combinations of the four collagens at normal breast tissue stiffness levels. Comparison of the collagen species in mouse normal breast and breast tumor ECM revealed common and distinct sets of collagens within the two types of tissues. Elevated collagen type I alpha 1 chain expression was found in human breast cancers. Collagen type XXV alpha 1 chain was identified in mouse breast tumors but not in normal breast tissues. Our data provide insights into modeling human breast pathophysiological structures and functions using native tissue-derived hydrogels and potential contributions of different collagen types or their monomers in breast cancer development.
Project description:Type I, II, III and V collagens were commonly identified in human, pig, and mouse breast ECM. Mammary epithelial cells were able to form acini on certain types or combinations of the four collagens at normal breast tissue stiffness levels. Comparison of the collagen species in mouse normal breast and breast tumor ECM revealed common and distinct sets of collagens within the two types of tissues. Elevated collagen type I alpha 1 chain expression was found in human breast cancers. Collagen type XXV alpha 1 chain was identified in mouse breast tumors but not in normal breast tissues. Our data provide insights into modeling human breast pathophysiological structures and functions using native tissue-derived hydrogels and potential contributions of different collagen types or their monomers in breast cancer development.
Project description:Breast cancer is the most prevalent cancer in women 1, and most cases are believed to have a sporadic, rather than heritable basis 2. To identify breast cancer driver genes, we exploited the C3H-Mcm4Chaos3/Chaos3 (“Chaos3”) mouse model that, by virtue of bearing a defective DNA replicative helicase subunit that causes elevated genomic instability (GIN), sustains somatic alterations ultimately causing mammary adenocarcinomas 6. Array Comparative Genomic Hybridization (aCGH) analysis of Chaos3 mammary tumors revealed recurrent copy number alterations (CNAs), most notably deletion of the Neurofibromin 1 (Nf1) tumor suppressor gene in all cases. NF1, a negative regulator of RAS, is traditionally recognized for its role in driving the development of neurofibromas in the context of the human disease Neurofibromatosis Type 1, but not breast cancer. Genomic DNA from tumor and reference samples were hybridized to NimbleGen 3x720K mouse CGH arrays. Two reference samples were used independently. CNAs were visualized using Nimblegen, IGV, and KCsmart software 32. Select genes were validated via qPCR. Critical regions within each Chaos3 CNA were identified as the region with the greatest overlap across multiple Chaos3 tumors.