Project description:Systemic sclerosis is a fibrosing chronic connective tissue disease of unknown etiology. A major hallmark of systemic sclerosis is the uncontrolled and persistent activation of fibroblasts, which release excessive amounts of extracellular matrix, lead to organ dysfunction, and cause high mobility and motility of patients. Systemic sclerosis-associated interstitial lung disease is one of the most common fibrotic organ manifestations in systemic sclerosis and a major cause of death. Treatment options for systemic sclerosis-associated interstitial lung disease and other fibrotic manifestations, however, remain very limited. Thus, there is a huge medical need for effective therapies that target tissue fibrosis, vascular alterations, inflammation, and autoimmune disease in systemic sclerosis-associated interstitial lung disease. In this review, we discuss data suggesting therapeutic ways to target different genes in distinct tissues/organs that contribute to the development of SSc.
Project description:Diagnosing interstitial lung disease (ILD) can be a challenging process. New biomarkers may support diagnostic decisions. Elevated serum progranulin (PGRN) levels have been reported in liver fibrosis and dermatomyositis-associated acute interstitial pneumonia. Our aim was to assess the role of PGRN in the differential diagnosis of idiopathic pulmonary fibrosis (IPF) and other ILDs. Serum levels of PGRN were measured by enzyme-linked immunosorbent assay in stable IPF (n = 40), non-IPF ILD (n = 48) and healthy controls (n = 17). Patient characteristics, lung function, CO diffusion (DLCO), arterial blood gases, 6-min walk test, laboratory parameters and high-resolution (HR)CT pattern were assessed. In stable IPF, PGRN levels did not differ from healthy controls; however, serum PGRN levels were significantly higher in non-IPF ILD patients compared to healthy subjects and IPF (53.47 ± 15.38 vs. 40.99 ± 5.33 vs. 44.66 ± 7.77 ng/mL respectively; p < 0.01). The HRCT pattern of usual interstitial pneumonia (UIP) was associated with normal PGRN level, while for non-UIP patterns, significantly elevated PGRN level was measured. Elevated serum PGRN levels may be associated with non-IPF ILD, especially non-UIP patterns and might be helpful in cases of unclear radiological patterns in the differentiation between IPF and other ILDs.
Project description:BackgroundSystemic sclerosis (SSc) is a rare connective tissue disease with a heterogeneous clinical course. Interstitial lung disease (ILD) is a common manifestation of SSc and a leading cause of death.Main bodyAll patients newly diagnosed with SSc should receive a comprehensive clinical evaluation, including assessment of respiratory symptoms, a high-resolution computed tomography (HRCT) scan of the chest, and pulmonary function tests. ILD can develop in any patient with SSc, including those with pulmonary hypertension, but the risk is increased in those with diffuse (rather than limited) cutaneous SSc, those with anti-Scl-70/anti-topoisomerase I antibody, and in the absence of anti-centromere antibody. While it can occur at any time, the risk of developing ILD is greatest early in the course of SSc, so patients should be monitored closely in the first few years after diagnosis. An increased extent of lung fibrosis on HRCT and a low forced vital capacity (FVC) are predictors of early mortality. While not all patients will require treatment, current approaches to the treatment of progressive SSc-ILD focus on immunosuppressant therapies, including cyclophosphamide and mycophenolate mofetil. In patients with severe and/or rapidly progressive disease, both haematopoietic stem cell transplantation (HSCT) and lung transplantation have been successfully used. A number of medications, including the two drugs approved for the treatment of idiopathic pulmonary fibrosis (IPF), are under active investigation as potential new therapies for SSc-ILD.ConclusionsPhysicians managing patients with SSc should maintain a high level of suspicion and regularly monitor for ILD, particularly in the first few years after diagnosis.
Project description:To understand the cellular composition and transcriptional phenotype of fibrotic lung tissue we performed single-cell RNA-seq on stromal, immune, epithelial, and endothelial cell populations from human lung explants. Tissue was collected from normal control lungs, patients with idiopathic pulmonary fibrosis (IPF), and patients with systemic sclerosis associated interstitial lung disease (SSc-ILD). Using the 10X Genomics Chromium platform, we generated transcriptional profiles of approximately 200,500 cells across 4 IPF, 3 SSc-ILD and 3 normal control lungs.