Transcriptome sequencing of normal and lens clouded eyes in the Myodes rufocanus (Sundevall, 1846)
Ontology highlight
ABSTRACT: We selected normal Myodes rufocanus eyes and lens clouded eyes for transcriptome sequencing, and excavated the lens clouded eyes by analyzing and comparing. We investigated the genes and mechanisms involved in congenital cataract.
Project description:Congenital cataract is one of the leading causes of blindness in children worldwide. About one third of congenital cataracts are caused by genetic defects. Previous studies have identified LSS as a causal gene for congenital cataracts. However, its roles in lens development remains largely unknown. Here, we performed RNA-seq on the lens of WT and Lss mutant (heterozygous and homozygous )at E14.5, identified that cholesterol synthesis signaling pathways were significantly downregulated. Overall, our study points out that LSS functions as a critical determinant of lens development, which will contribute to better understand LSS defects in cataractogenesis and develop therapies for cataract.
Project description:The lens of the eye is consisted of lens fiber cells that undergo large-scale organelle degradation during terminal differentiation. To understand the molecular mechanism of large-scale organelle degradation, we compared the gene expression profiles between the lens and body without eyes of larval zebrafish using a microarray analysis.
Project description:Ocular lens development entails epithelial to fiber cell differentiation, defects in which cause congenital cataract. We report the first single-cell multiomic atlas of lens development, leveraging snRNA-seq, snATAC-seq, and CUT&RUN-seq to discover novel mechanisms of cell fate determination and cataract-linked regulatory networks. A comprehensive profile of cis- and trans-regulatory interactions, including for the cataract-linked transcription factor MAF, is established across a temporal trajectory of fiber cell differentiation. Further, we divulge a conserved epigenetic paradigm of cellular differentiation, defined by progressive loss of H3K27 methylation writer Polycomb repressive complex 2 (PRC2). PRC2 localizes to heterochromatin domains across master-regulator transcription factor gene bodies, suggesting it safeguards epithelial cell fate. Moreover, we demonstrate that FGF hyper-stimulation in vivo leads to MAF network activation and the emergence of novel lens cell states. Collectively, these data depict a comprehensive portrait of lens fiber cell differentiation, while defining regulatory effectors of cell identity and cataract formation.
Project description:Ocular lens development entails epithelial to fiber cell differentiation, defects in which cause congenital cataract. We report the first single-cell multiomic atlas of lens development, leveraging snRNA-seq, snATAC-seq, and CUT&RUN-seq to discover novel mechanisms of cell fate determination and cataract-linked regulatory networks. A comprehensive profile of cis- and trans-regulatory interactions, including for the cataract-linked transcription factor MAF, is established across a temporal trajectory of fiber cell differentiation. Further, we divulge a conserved epigenetic paradigm of cellular differentiation, defined by progressive loss of H3K27 methylation writer Polycomb repressive complex 2 (PRC2). PRC2 localizes to heterochromatin domains across master-regulator transcription factor gene bodies, suggesting it safeguards epithelial cell fate. Moreover, we demonstrate that FGF hyper-stimulation in vivo leads to MAF network activation and the emergence of novel lens cell states. Collectively, these data depict a comprehensive portrait of lens fiber cell differentiation, while defining regulatory effectors of cell identity and cataract formation.
Project description:Ocular lens development entails epithelial to fiber cell differentiation, defects in which cause congenital cataract. We report the first single-cell multiomic atlas of lens development, leveraging snRNA-seq, snATAC-seq, and CUT&RUN-seq to discover novel mechanisms of cell fate determination and cataract-linked regulatory networks. A comprehensive profile of cis- and trans-regulatory interactions, including for the cataract-linked transcription factor MAF, is established across a temporal trajectory of fiber cell differentiation. Further, we divulge a conserved epigenetic paradigm of cellular differentiation, defined by progressive loss of H3K27 methylation writer Polycomb repressive complex 2 (PRC2). PRC2 localizes to heterochromatin domains across master-regulator transcription factor gene bodies, suggesting it safeguards epithelial cell fate. Moreover, we demonstrate that FGF hyper-stimulation in vivo leads to MAF network activation and the emergence of novel lens cell states. Collectively, these data depict a comprehensive portrait of lens fiber cell differentiation, while defining regulatory effectors of cell identity and cataract formation.
Project description:This study investigates the response of human lens epithelial cells to mechanical injury. Human geriatric lenses obtained from cadaver eyes from donated to an eye bank for research were subject to in-vitro capsulotomy mimicking the injury sustained during cataract surgery. The anterior capsule was dissected using a curvilinear capsulorhexis technique, and central lens epithelial cells attached to the patch of anterior capsule (Rhexis) were immediately stabilized in RNAlater. The fiber cells were then removed, and the cortical fibers were immediately stabilized in RNA later. The remaining equatorial lens epithelial cells attached to the capsular bag from one eye were stabilized in RNA later immediately while the equatorial lens epithelial cells from the other eye were cultured for 24 hours then stabilized in RNAlater.
Project description:Identification of genes involved in ocular birth defects remains a challenge. To facilitate the identification of genes associated with cataract, we developed iSyTE (integrated Systems Tool for Eye gene discovery; http://bioinformatics.udel.edu/Research/iSyTE). iSyTE contains microarray gene expression profiles of the mouse embryonic lens as it transitions from the stage of placode invagination to that of vesicle formation. We identified differentially regulated genes by comparing lens microarray profiles to those representing whole embryonic body (WB) without ocular tissue. These were then utilized to generate a ranked list of lens-genes enrichment, which can be viewed as iSyTE tracks in the UCSC Genome browser to aid identification of genes with lens function. We microdissected embryonic lens from mice at E10.5, E11.5, and E12.5 (triplicate at each time point). To have a proper control, we also generated gene expression profiles of whole embryonic body (WB) at these time points. For comparative analysis, we also generated gene expression profiles of E13.5 tooth germs tissues, and matched WB. These profiles are used to identify lens and tooth specific gene expression enrichment at these embryonic time points. This dataset is then used to prioritize analysis of candidate cataract associated genes.
Project description:Celf1 germline or conditional deletion mouse mutants exhibit fully penetrant lens defects including cataract. To gain insight into gene expression changes underlying these lens defects, microarray comparison was performed for lenses obtained from control and Celf1 conditional deletion mutant mice.
Project description:Identification of genes involved in ocular birth defects remains a challenge. To facilitate the identification of genes associated with cataract, we developed iSyTE (integrated Systems Tool for Eye gene discovery; http://bioinformatics.udel.edu/Research/iSyTE). iSyTE contains microarray gene expression profiles of the mouse embryonic lens as it transitions from the stage of placode invagination to that of vesicle formation. We identified differentially regulated genes by comparing lens microarray profiles to those representing whole embryonic body (WB) without ocular tissue. These were then utilized to generate a ranked list of lens-genes enrichment, which can be viewed as iSyTE tracks in the UCSC Genome browser to aid identification of genes with lens function.