DNA methyltransferase 1 deficiency improves macrophage motility and wound healing by ameliorating cholesterol accumulation
Ontology highlight
ABSTRACT: Healing of the cutaneous wound requires macrophage recruitment at the sites of injury, where chemotactic migration of macrophages toward the wound is regulated by local inflammation. Recent studies suggest a positive contribution of DNA methyltransferase 1 (Dnmt1) to macrophage pro-informatory responses; however, its role in regulating macrophage motility remains unknown. In this study, myeloid-specific depletion of Dnmt1 in mice promoted cutaneous wound healing and de-suppressed the lipopolysaccharides (LPS)-inhibited macrophage motility. Dnmt1 inhibition in macrophages eliminated the LPS-stimulated changes in cellular mechanical properties in terms of elasticity and viscoelasticity. LPS increased the cellular accumulation of cholesterol in a Dnmt1-depedent manner; cholesterol content determined cellular stiffness and motility. Lipidomic analysis indicated that Dnmt1 inhibition altered the cellular lipid homeostasis, probably through down-regulating the expression of cluster of differentiation 36 CD36 (facilitating lipid influx) and up-regulating the expression of ATP-binding cassette transporter ABCA1 (mediating lipid efflux) and sterol O-acyltransferase 1 SOAT1 (also named ACAT1, catalyzing the esterification of cholesterol). Our study revealed a Dnmt1-dependent epigenetic mechanism in the control of macrophage mechanical properties and the related chemotactic motility, indicating Dnmt1 as both a marker of diseases and a potential target of therapeutic intervention for wound healing.
Project description:We generated a genomic and phenotypic resource comprising genetically outbred mice in which we measured (i) quantitative differences in wound healing indicated as ear area (ii) bone marrow derived macrophage (BMDM) mRNA expression by RNA-sequencing (RNA-seq), (iii) genome-wide SNPs genotyping by low-coverage sequencing.We performed gene co-expression network analysis and we identified a network in macrophages enriched in cholesterol genes which is genetically controlled by Runx2 gene. In vivo pharmacological blockage of Fasn with cerulenin showed delayed wound healing in rats and increased macrophage recruitment to the wound.
Project description:Diabetic foot ulcer (DFU) is a serious complication of diabetes mellitus, which causes great health damage and economic burden to patients. The pathogenesis of DFU is not fully understood.We screened wound healing-related genes using bioinformatics analysis, and full-thickness skin injury mice model and cellular assays were used to explore the role of target genes in diabetic wound healing. SFRP2 was identified as a wound healing-related gene, and the expression of SFRP2 is associated with immune cell infiltration in DFU. In vivo study showed that suppression of SFRP2 delayed the wound healing process of diabetic mice, impeded angiogenesis and matrix remodeling, and increased macrophage infiltration in wound tissues. In addition, suppression of SFRP2 enhanced M1 polarization in both the early and later stage of wound healing, and decreased M2 polarization in the later stage, which impeded the transition of M1 to M2 polarization of wound healing. Moreover, suppression of SFRP2 affected the transcriptome signatures-related to inflammatory response and energy metabolism at the early stage of wound healing. Extracellular flux analysis (EFA) showed that suppression of SFRP2 decreased mitochondrial energy metabolism and increased glycolysis in injury-related macrophages. Furthermore, suppression of SFRP2 inhibited transcriptome signaturesrelated to carbohydrate metabolism, lipid metabolism and amino acid metabolism, which consists the three main components of energy metabolism of macrophages. In conclusions, SFRP2 may function as a wound healing-related gene in DFU, and suppression of SFRP2 impaired diabetic wound healing by compromising the M1-to-M2 transition of macrophages and modulating the balance between mitochondrial energy metabolism and glycolysis.
Project description:Diabetic foot ulcer (DFU) is a serious complication of diabetes mellitus, which causes great health damage and economic burden to patients. The pathogenesis of DFU is not fully understood.We screened wound healing-related genes using bioinformatics analysis, and full-thickness skin injury mice model and cellular assays were used to explore the role of target genes in diabetic wound healing. SFRP2 was identified as a wound healing-related gene, and the expression of SFRP2 is associated with immune cell infiltration in DFU. In vivo study showed that suppression of SFRP2 delayed the wound healing process of diabetic mice, impeded angiogenesis and matrix remodeling, and increased macrophage infiltration in wound tissues. In addition, suppression of SFRP2 enhanced M1 polarization in both the early and later stage of wound healing, and decreased M2 polarization in the later stage, which impeded the transition of M1 to M2 polarization of wound healing. Moreover, suppression of SFRP2 affected the transcriptome signatures-related to inflammatory response and energy metabolism at the early stage of wound healing. Extracellular flux analysis (EFA) showed that suppression of SFRP2 decreased mitochondrial energy metabolism and increased glycolysis in injury-related macrophages. Furthermore, suppression of SFRP2 inhibited transcriptome signaturesrelated to carbohydrate metabolism, lipid metabolism and amino acid metabolism, which consists the three main components of energy metabolism of macrophages. In conclusions, SFRP2 may function as a wound healing-related gene in DFU, and suppression of SFRP2 impaired diabetic wound healing by compromising the M1-to-M2 transition of macrophages and modulating the balance between mitochondrial energy metabolism and glycolysis.
Project description:The aim of this experiment was to investigate the role of MIF during wound healing using BALB/C MIF null mice and in the context of reduced estrogen-associated impaired healing using ovariectomized mice (a mouse model of age-associated delayed healing). Ageing is associated with delayed cutaneous wound healing resulting from reduced estrogen levels. Macrophage migration inhibitory factor (MIF - NCBI RefSeq: NM_010798) is thought to mediate the effects of estrogen on wound healing. Gene expression was compared between wounds from ovariectomized MIF null mice and controls.
Project description:TNF-mediated macrophage polarization is important for inflammatory disease pathogenesis, but mechanisms that regulate polarization are not well understood. Transcriptomic and epigenomic analysis of the TNF response in primary human macrophages revealed late phase activation of SREBP2, the master regulator of cholesterol biosynthesis genes. TNF stimulation extended the genomic profile of SREBP2 occupancy to include binding to and activation of inflammatory and interferon response genes independently of its functions in sterol metabolism. Genetic ablation of SREBP function shifted the balance of macrophage polarization from M1 to an M2-like reparative phenotype in peritonitis and skin wound healing models. Genetic ablation of SREBP activity in myeloid cells or topical pharmacological inhibition of SREBP improved skin wound healing under homeostatic and chronic inflammatory conditions. Our results identify a new function and mechanism of action for SREBP2 in augmenting TNF-induced M1 macrophage polarization and inflammation, and open therapeutic avenues for promoting wound repair.
Project description:TNF-mediated macrophage polarization is important for inflammatory disease pathogenesis, but mechanisms that regulate polarization are not well understood. Transcriptomic and epigenomic analysis of the TNF response in primary human macrophages revealed late phase activation of SREBP2, the master regulator of cholesterol biosynthesis genes. TNF stimulation extended the genomic profile of SREBP2 occupancy to include binding to and activation of inflammatory and interferon response genes independently of its functions in sterol metabolism. Genetic ablation of SREBP function shifted the balance of macrophage polarization from M1 to an M2-like reparative phenotype in peritonitis and skin wound healing models. Genetic ablation of SREBP activity in myeloid cells or topical pharmacological inhibition of SREBP improved skin wound healing under homeostatic and chronic inflammatory conditions. Our results identify a new function and mechanism of action for SREBP2 in augmenting TNF-induced M1 macrophage polarization and inflammation, and open therapeutic avenues for promoting wound repair.
Project description:TNF-mediated macrophage polarization is important for inflammatory disease pathogenesis, but mechanisms that regulate polarization are not well understood. Transcriptomic and epigenomic analysis of the TNF response in primary human macrophages revealed late phase activation of SREBP2, the master regulator of cholesterol biosynthesis genes. TNF stimulation extended the genomic profile of SREBP2 occupancy to include binding to and activation of inflammatory and interferon response genes independently of its functions in sterol metabolism. Genetic ablation of SREBP function shifted the balance of macrophage polarization from M1 to an M2-like reparative phenotype in peritonitis and skin wound healing models. Genetic ablation of SREBP activity in myeloid cells or topical pharmacological inhibition of SREBP improved skin wound healing under homeostatic and chronic inflammatory conditions. Our results identify a new function and mechanism of action for SREBP2 in augmenting TNF-induced M1 macrophage polarization and inflammation, and open therapeutic avenues for promoting wound repair.
Project description:TNF-mediated macrophage polarization is important for inflammatory disease pathogenesis, but mechanisms that regulate polarization are not well understood. Transcriptomic and epigenomic analysis of the TNF response in primary human macrophages revealed late phase activation of SREBP2, the master regulator of cholesterol biosynthesis genes. TNF stimulation extended the genomic profile of SREBP2 occupancy to include binding to and activation of inflammatory and interferon response genes independently of its functions in sterol metabolism. Genetic ablation of SREBP function shifted the balance of macrophage polarization from M1 to an M2-like reparative phenotype in peritonitis and skin wound healing models. Genetic ablation of SREBP activity in myeloid cells or topical pharmacological inhibition of SREBP improved skin wound healing under homeostatic and chronic inflammatory conditions. Our results identify a new function and mechanism of action for SREBP2 in augmenting TNF-induced M1 macrophage polarization and inflammation, and open therapeutic avenues for promoting wound repair.