Microarray skeletal muscle PGC-1alpha-/- - beta f/f/Mlc1fCre mice
Ontology highlight
ABSTRACT: Title: Total Skeletal Muscle PGC-1 Deficiency Uncouples Mitochondrial Derangements from Fiber Type Determination and Insulin Sensitivity Abstract: Evidence is emerging that the PGC-1 coactivators serve a critical role in skeletal muscle metabolism, function, and disease. Mice with total PGC-1 deficiency in skeletal muscle (PGC-1α-/- βf/f/MLC-Cre mice) were generated and characterized. PGC-1α-/-βf/f/MLC-Cre mice exhibit a dramatic reduction in exercise performance compared to single PGC-1α- or PGC-1β-deficient mice and wild-type controls. The exercise phenotype of the PGC-1α-/-βf/f/MLC-Cre mice was associated with a marked diminution in muscle oxidative capacity and mitochondrial structural derangements consistent with fusion/fission and biogenic defects together with rapid depletion of muscle glycogen stores during exercise. Surprisingly, the skeletal muscle fiber type profile of the PGC-1α-/-βf/f/MLCCre mice was not significantly different than the wild-type mice. Moreover, insulin sensitivity and glucose tolerance were also not altered in the PGC-1α-/-βf/f/MLC-Cre mice. Taken together, we conclude that PGC-1 coactivators are necessary for the oxidative and mitochondrial programs of skeletal muscle but are dispensable for fundamental fiber type determination and insulin sensitivity.
ORGANISM(S): Mus musculus
PROVIDER: GSE23365 | GEO | 2010/12/01
SECONDARY ACCESSION(S): PRJNA131245
REPOSITORIES: GEO
ACCESS DATA