Activity-dependent cholesterol biosynthesis in human-derived astrocytes regulates the functional maturation of human-derived cortical neurons
Ontology highlight
ABSTRACT: Astrocytes regulate the functional maturation of neurons by providing trophic support, regulating membrane properties and coordinating synapse formation. However, it is unclear to what degree astrocytes use activity-dependent mechanisms in these intercellular signalling processes. Using an induced pluripotent stem cell system and long-term optogenetic stimulation of human astrocytes, we reveal that activity-dependent astrocytic signals enhance the functional maturation of human cortical neurons, through increases in synaptic connectivity and excitability. Transcriptomic analyses determine that this involves the activity-dependent up-regulation of cholesterol synthesis – a process ascribed to astrocytes, which regulates neuronal maturation. Up-regulated astrocyte genes encode enzymes and transcription factors that control the levels of cholesterol synthesis. Biochemical assays confirm an activity-dependent upregulation of cholesterol synthesis in astrocytes, which is required for the maturational effects upon neurons. Thus, we reveal a novel mechanism that may dynamically match astrocyte function to neuronal needs, and identify targets for modulating cholesterol synthesis in the CNS.
ORGANISM(S): Homo sapiens
PROVIDER: GSE236398 | GEO | 2023/07/21
REPOSITORIES: GEO
ACCESS DATA