Project description:Autism spectrum disorders (ASDs) are relatively common neurodevelopmental conditions whose biological basis has been incompletely determined. We analyzed the metabolic profile of lymphoblastoid cell lines from patients with ASDs and normal individuals, using the Biolog Phenotype plates. To validate our metabolic findings, we utilized the Agilent Whole Human Genome Oligo Microarray to evaluate the level of gene expression in the tested cell lines. As a comparison for gene expression profiles in cells of patients with ASDs, we also performed microarray analysis for lymphoblastoid cell lines from patients with intellectual disability (ID). Two independent experiments were performed for each sample. To maximize the contrast between samples, we implemented a loop experimental design.
Project description:Paired genomic DNA and cDNA samples obtained from lymphoblastoid cell lines from CEU and YRI HapMap individuals were hybridized to custom Illumina SNP arrays to study allele-specific expression in this tissue.
Project description:We have used chromatin immune-precipitation with parallel sequencing (ChIP-Seq) technology to identify genome-wide p53 binding in human lymphoblastoid cell lines treated withionizing radiation
Project description:We have used chromatin immune-precipitation with parallel sequencing (ChIP-Seq) technology to identify genome-wide H3K4me3 binding in human lymphoblastoid cell lines treated with a DNA-damaging chemotherapeutic reagent doxorubicin.
Project description:We have used chromatin immune-precipitation with parallel sequencing (ChIP-Seq) technology to identify genome-wide p53 binding in human lymphoblastoid cell lines treated with a DNA-damaging chemotherapeutic reagent doxorubicin.